已知直線l1:3x+4y-5=0,圓Ox2y2=4.

(1)求直線l1被圓O所截得的弦長;

(2)如果過點(-1,2)的直線l2l1垂直,l2與圓心在直線x-2y=0上的圓M相切,圓M被直線l1分成兩段圓弧,其弧長比為2∶1,求圓M的方程.

(1)        (2)


解析:

由題意得:圓心到直線的距離

,由垂徑定理的,弦長為

(2)直線

設圓心圓心到直線的距離為,即圓的半徑,由題意可得,圓心到直線的距離為,所以有:

解得:,所以圓心為,,所以所求圓方程為:

,即圓方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l1
3
x-y+2=0,l2:3x+
3
y-5=0,則直線l1與l2的夾角是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:3x+4y-5=0和l2:3x+5y-6=0相交,則它們的交點是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1
3
x-y+2=0,求過點(1,0)且與直線l1的夾角為60°的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:3x+4y-5=0與直線l2:2x-3y+8=0交于點P.
(1)求點P的坐標;
(2)求過點P且與l1垂直的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:3x+4y-2=0與l2:2x+y+2=0的交點為P.
(Ⅰ)求交點P的坐標;
(Ⅱ)求過點P且平行于直線l3:x-2y-1=0的直線方程;
(Ⅲ)求過點P且垂直于直線l3:x-2y-1=0直線方程.

查看答案和解析>>

同步練習冊答案