(14分)設函數(shù).
(1)當時,求的極值;
(2)當時,求的單調區(qū)間;
(3)若對任意及,恒有成立,求的取值范圍
(Ⅰ)的極小值為,無極大值 .
(Ⅱ)當時,的遞減區(qū)間為;遞增區(qū)間為.
當時,在單調遞減.
當時,的遞減區(qū)間為;遞增區(qū)間為.
(Ⅲ) .
解析試題分析:(1)將a=0代入函數(shù)解析式中可知,函數(shù)的導數(shù),然后運用導數(shù)的符號與單調性的關系求解單調區(qū)間,并得到極值。
(2)當a>0時,利用導函數(shù),對于參數(shù)a,進而分類討論研究其單調性,看開口和判別式得到。
(3)要證明不等式恒成立,只要利用第二問的結論根據(jù)最大值和最小值得到求解。
解:(Ⅰ)依題意,知的定義域為.
當時, ,.
令,解得.
當時,;當時, .
又,
所以的極小值為,無極大值 . …………………………(4分)
(Ⅱ)
當時,,
令,得或,
令,得;
當時,得,
令,得或,
令,得;
當時,.
綜上所述,當時,的遞減區(qū)間為;遞增區(qū)間為.
當時,在單調遞減.
當時,的遞減區(qū)間為;遞增區(qū)間為.
…………………………………(9分)
(Ⅲ)由(Ⅱ)可知,當時,在單調遞減.
當時,取最大值;當時,取最小值.
所以
.………………(11分)
因為恒成立,
所以,
整理得.
又 所以,
又因為 ,得,
所以
所以 . ……………………………………………………………(14分)
考點:本試題主要考查了導數(shù)在研究函數(shù)中的運用。
點評:解決該試題的關鍵是對于含有參數(shù)的導數(shù)的符號的確定,需要分類討論思想來得到。
科目:高中數(shù)學 來源: 題型:解答題
如圖,有一邊長為2米的正方形鋼板缺損一角(圖中的陰影部分),邊緣線是以直線為對稱軸,以線段的中點為頂點的拋物線的一部分.工人師傅要將缺損一角切割下來,使剩余的部分成為一個直角梯形.
(Ⅰ)請建立適當?shù)闹苯亲鴺讼,求陰影部分的邊緣線的方程;
(Ⅱ)如何畫出切割路徑,使得剩余部分即直角梯形的面積最大?
并求其最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知函數(shù),其圖象在點處的切線方程為.
(1)求的值;
(2)求函數(shù)的單調區(qū)間,并求出在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)在上是增函數(shù),在上是減函數(shù).
(1)求函數(shù)的解析式;
(2)若時,恒成立,求實數(shù)的取值范圍;
(3)是否存在實數(shù),使得方程在區(qū)間上恰有兩個相異實數(shù)根,若存在,求出的范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本大題12分)
已知函數(shù)函數(shù)的圖象與的圖象關于直線對稱,.
(Ⅰ)當時,若對均有成立,求實數(shù)的取值范圍;
(Ⅱ)設的圖象與的圖象和的圖象均相切,切點分別為和,其中.
(1)求證:;
(2)若當時,關于的不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com