7.在極坐標(biāo)系中,已知兩點(diǎn)A(3,$\frac{5π}{3}$),B(1,$\frac{2π}{3}$),則A,B 兩點(diǎn)間的距離等于4.

分析 求出A,B的直角坐標(biāo),利用兩點(diǎn)間的距離公式,即可得出結(jié)論.

解答 解:兩點(diǎn)A(3,$\frac{5π}{3}$),B(1,$\frac{2π}{3}$),直角坐標(biāo)分別為A($\frac{3}{2}$,-$\frac{3\sqrt{3}}{2}$),B(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
∴|AB|═$\sqrt{(-\frac{1}{2}-\frac{3}{2})^{2}+(\frac{\sqrt{3}}{2}+\frac{3\sqrt{3}}{2})^{2}}$=4.
故答案為4.

點(diǎn)評(píng) 本題考查極坐標(biāo)與直角坐標(biāo)的互化,考查兩點(diǎn)間的距離公式,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

設(shè)集合,,則等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=4,且△ABC的面積的最大值為$\sqrt{3}$,則此時(shí)△ABC的形狀為( 。
A.銳角三角形B.直線三角形C.等腰三角形D.正三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知Sn是數(shù)列{an}的前n項(xiàng)和,且滿(mǎn)足Sn+Sn-1=tan2(其中t為常數(shù),t>0,n≥2),已和a1=0,且當(dāng)n≥2時(shí),an>0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若對(duì)于n≥2,n∈N*,不等式$\frac{1}{{{a_2}{a_3}}}+\frac{1}{{{a_3}{a_4}}}+\frac{1}{{{a_4}{a_5}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<2$恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某企業(yè)有甲、乙兩個(gè)分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品,從甲、乙兩個(gè)分廠生產(chǎn)的零件中各抽取出500件,量其內(nèi)徑尺寸的結(jié)果如下表:
甲廠的零件內(nèi)徑尺寸:
分組[29.86,
29.90)
[29.90,29.94)[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
頻數(shù)1530125198773520
乙廠的零件內(nèi)徑尺寸:
分組[29.86,
29.90)
[29.90,
29.94)
[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
頻數(shù)407079162595535
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問(wèn)是否有99.9%的把握認(rèn)為“生產(chǎn)的零件是否為優(yōu)質(zhì)品與在不同分廠生產(chǎn)有關(guān)”:
 甲廠乙廠合計(jì)
優(yōu)質(zhì)品   
非優(yōu)質(zhì)品   
合計(jì)   
附表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
0.1000.0500.0250.0100.001
2.7063.8415.0246.63510.828
(2)現(xiàn)用分層抽樣方法(按優(yōu)質(zhì)品和非優(yōu)質(zhì)品分二層),從乙廠中抽取5件零件,從這已知5件零件中任意抽取2件,將這2件零件中的優(yōu)質(zhì)品數(shù)記為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知△ABC的三個(gè)頂點(diǎn)在以O(shè)為球心的球面上,且 cosA=$\frac{{2\sqrt{2}}}{3}$,BC=1,AC=3,且球O的表面積為16π,則三棱錐O-ABC的體積為( 。
A.$\frac{{\sqrt{15}}}{6}$B.$\frac{{\sqrt{14}}}{6}$C.$\frac{{2\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知幾何體由兩個(gè)直棱柱組合而成,其三視圖和直觀圖如圖所示.設(shè)兩異面直線A1Q,PD所成的角為θ,則cosθ的值為$\frac{\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知點(diǎn)F(0,1),一動(dòng)圓過(guò)點(diǎn)F且與圓E:x2+(y+1)2=8內(nèi)切.
(1)求動(dòng)圓圓心的軌跡C的方程;
(2)設(shè)點(diǎn)A(a,0),點(diǎn)P為曲線C上任一點(diǎn),求點(diǎn)A到點(diǎn)P距離的最大值d(a);
(3)在0<a<1的條件下,設(shè)△POA的面積為S1(O是坐標(biāo)原點(diǎn),P是曲線C上橫坐標(biāo)為a的點(diǎn)),以d(a)為邊長(zhǎng)的正方形的面積為S2,試求滿(mǎn)足S1≤mS2的正數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.(x-1)10(x2+x+1)展開(kāi)式中x2項(xiàng)的系數(shù)為36.

查看答案和解析>>

同步練習(xí)冊(cè)答案