設滿足以下兩個條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:①a1+a2+a3+…+an=0;②|a1|+|a2|+|a3|+…+|an|=1.
(1)分別寫出一個單調遞增的3階和4階“期待數(shù)列”;
(2)若某2k+1(k∈N*)階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式.
【答案】分析:(1)利用新定義直接利用等差數(shù)列,寫出一個單調遞增的3階和4階“期待數(shù)列”;
(2)利用某2k+1(k∈N*)階“期待數(shù)列”是等差數(shù)列,通過公差為0,大于0.小于0,分別求解該數(shù)列的通項公式.
解答:解:(1)數(shù)列-,0,為三階期待數(shù)列…(1分)
數(shù)列-,-,,為四階期待數(shù)列,…..…..(3分)(其它答案酌情給分)
(2)設等差數(shù)列a1,a2,a3,…,a2k+1(k≥1)的公差為d,
∵a1+a2+a3+…+a2k+1=0,
∴(2k+1)a1+=0,
所以a1+kd=0,
即ak+1=0,∴ak+2=d,…(4分)
當d=0時,與期待數(shù)列的條件①②矛盾,…(5分)
當d>0時,據(jù)期待數(shù)列的條件①②得:a k+2+a k+3+…+a 2k+1=,
∴kd+d=,即d=
由ak+1=0得 a 1+k=0,即 a1=-,
∴an=-+(n-1)=-(n∈N*,n≤2k+1).…(7分)
當d<0時,
同理可得
由ak+1=0得
.…(12分)
點評:本題考查新數(shù)列新定義的應用,求數(shù)列的通項公式的方法,考查分析問題解決問題的能力,難度中,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設滿足以下兩個條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:①a1+a2+a3+…+an=0;②|a1|+|a2|+|a3|+…+|an|=1.
(1)分別寫出一個單調遞增的3階和4階“期待數(shù)列”;
(2)若某2k+1(k∈N*)階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•豐臺區(qū)一模)設滿足以下兩個條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(Ⅰ)分別寫出一個單調遞增的3階和4階“期待數(shù)列”;
(Ⅱ)若某2013階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式;
(Ⅲ)記n階“期待數(shù)列”的前k項和為Sk(k=1,2,3,…,n),試證:|Sk|≤
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•豐臺區(qū)一模)設滿足以下兩個條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(Ⅰ)分別寫出一個單調遞增的3階和4階“期待數(shù)列”;
(Ⅱ)若某2k+1(k∈N*)階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式;
(Ⅲ)記n階“期待數(shù)列”的前k項和為Sk(k=1,2,3,…,n),試證:
(1)|Sk|≤
1
2
;     
(2)|
n
i=1
ai
i
|≤
1
2
-
1
2n

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省揚州市高三下學期5月考前適應性考試理科數(shù)學試卷(解析版) 題型:解答題

設滿足以下兩個條件的有窮數(shù)列階“期待數(shù)列”:

;②

(1)若等比數(shù)列 ()階“期待數(shù)列”,求公比;

(2)若一個等差數(shù)列既是 ()階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;

(3)記階“期待數(shù)列”的前項和為

(ⅰ)求證:;

(ⅱ)若存在使,試問數(shù)列能否為階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.

 

查看答案和解析>>

同步練習冊答案