如圖,在中,,斜邊.可以通過(guò) 以直線(xiàn)為軸旋轉(zhuǎn)得到,且二面角是直二面角.動(dòng)點(diǎn)在斜邊上.
(1)求證:平面平面;
(2)求與平面所成角的最大角的正切值.
(1)見(jiàn)解析(2)
解析試題分析:(1)利用二面角的定義、線(xiàn)面與面面垂直的判定與性質(zhì)即可得出;
(2)利用線(xiàn)面角的定義及其含30°角的直角三角形的邊角關(guān)系即可得出.
試題解析:(1)證明:由題意,,∴是二面角的平面角,又二面角是直二面角,,
又∵平面平面
(2)解:由(1)知,,∴∠CDO是CD與平面AOB所成的角,且,當(dāng)OD最小時(shí),∠CDO最大,這時(shí),OD⊥AB,垂足為D,,,
CD與平面AOB所成的角最大時(shí)的正切值為.
考點(diǎn):二面角的定義、線(xiàn)面與面面垂直的判定與性質(zhì)、線(xiàn)面角的定義
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,底面是正方形,側(cè)面底面,,分別為,中點(diǎn),.
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一點(diǎn),使平面?若存在,指出點(diǎn)的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形ABCD與四邊形都為正方形,,F(xiàn)
為線(xiàn)段的中點(diǎn),E為線(xiàn)段BC上的動(dòng)點(diǎn).
(1)當(dāng)E為線(xiàn)段BC中點(diǎn)時(shí),求證:平面AEF;
(2)求證:平面AEF平面;
(3)設(shè),寫(xiě)出為何值時(shí)MF⊥平面AEF(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在Rt△ABC中,∠ABC=90°,D為AC中點(diǎn),于(不同于點(diǎn)),延長(zhǎng)AE交BC于F,將△ABD沿BD折起,得到三棱錐,如圖2所示.
(1)若M是FC的中點(diǎn),求證:直線(xiàn)//平面;
(2)求證:BD⊥;
(3)若平面平面,試判斷直線(xiàn)與直線(xiàn)CD能否垂直?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四棱錐,,,
平面,∥,為的中點(diǎn).
(1)求證:∥平面;
(2)求證:平面平面;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.
(1)求證:AF∥平面BDE;
(2)求證:CF⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐PABCD中,底面是邊長(zhǎng)為2的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2,M、N分別為PB、PD的中點(diǎn).
(1)證明:MN∥平面ABCD;
(2)過(guò)點(diǎn)A作AQ⊥PC,垂足為點(diǎn)Q,求二面角AMNQ的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.
(1)求棱AA1與BC所成的角的大;
(2)在棱B1C1上確定一點(diǎn)P,使二面角P-AB-A1的平面角的余弦值為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com