在四邊形ABCD中,
AB
=
DC
,且|
AB
|=|
BC
|,那么四邊形ABCD為( 。
A、平行四邊形B、菱形
C、長(zhǎng)方形D、正方形
分析:根據(jù)
AB
=
DC
,以及共線向量定理可得AB∥CD,且AB=CD,從而可知在四邊形ABCD是平行四邊形,又由|
AB
|=|
BC
|得四邊形ABCD的一組鄰邊相等,因此得到四邊形ABCD為菱形.
解答:解:由
AB
=
DC
可得四邊形ABCD是平行四邊形,
由|
AB
|=|
BC
|得四邊形ABCD的一組鄰邊相等,
∴一組鄰邊相等的平行四邊形是菱形.
故選B.
點(diǎn)評(píng):此題是個(gè)基礎(chǔ)題.考查共線向量定理以及向量在幾何中的應(yīng)用,考查學(xué)生利用知識(shí)分析解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在四邊形ABCD中,EF∥BC,F(xiàn)G∥AD,則
EF
BC
+
FG
AD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90°,CD∥AB,AB=4,CD=1,點(diǎn)M在PB上,且MB=3PM,PB與平面ABC成30°角.
(1)求證:CM∥面PAD;
(2)求證:面PAB⊥面PAD;
(3)求點(diǎn)C到平面PAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四邊形ABCD中,
AB
=
DC
且|
AB
|=|
AD
|,則四邊形的形狀為
菱形
菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四邊形ABCD中,若
AC
BD
=0,
AB
=
DC
,則四邊形ABCD的形狀是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•大豐市一模)在四邊形ABCD中,對(duì)角線AC與BD互相平分,交點(diǎn)為O.在不添加任何輔助線的前提下,要使四邊形ABCD成為矩形,還需添加一個(gè)條件,這個(gè)條件可以是
∠ABC=90°或AC=BD(答案不唯一)
∠ABC=90°或AC=BD(答案不唯一)

查看答案和解析>>

同步練習(xí)冊(cè)答案