11.條件p:-2<x<4,條件q:(x+2)(x-a)<0,若p是q的充分不必要條件,則a的取值范圍是( 。
A.(4,+∞)B.[4,+∞)C.(-∞,4)D.(-∞,4]

分析 解出關(guān)于q的不等式,結(jié)合p是q的充分不必要條件,求出a的范圍即可.

解答 解:a>-2時(shí),由(x+2)(x-a)<0,解得:-2<x<a,
故q:-2<x<a;
a=-2時(shí),不等式無(wú)解,
故q:∅;
a<-2時(shí),由(x+2)(x-a)<0,解得:a<x<-2,
故q:a<x<-2;
若p是q的充分不必要條件,
則q:-2<x<a,
故a>4,
故選:A.

點(diǎn)評(píng) 本題考查了充分必要條件,考查解不等式問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知F1,F(xiàn)2是橢圓$\frac{x^2}{25}+\frac{y^2}{9}$=1的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn),且∠F1PF2=60°則△PF1F2的面積為3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=3x2-2ax-b,其中a,b是實(shí)數(shù).
(1)若不等式f(x)≤0的解集是[0,6],求ab的值;
(2)若b=3a,對(duì)任意x∈R,都有f(x)≥0,且存在實(shí)數(shù)x,使得f(x)≤2-$\frac{2}{3}$a,求實(shí)數(shù)a的取值范圍;
(3)若方程有一個(gè)根是1,且a,b>0,求$\frac{1}{2a+1}+\frac{1}{b+2}$的最小值,及此時(shí)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.計(jì)算
(1)log2$\sqrt{\frac{7}{48}}$+log212-$\frac{1}{2}$log242
(2)$\root{3}{(-2)^{3}}-(\frac{1}{3})^{0}$+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若X-B(n,p),且E(X)=6,D(X)=3,則P=( 。
A.$\frac{1}{2}$B.3C.$\frac{1}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)全集為R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.與雙曲線$\frac{x^2}{3}-{y^2}=1$共漸近線且過(guò)點(diǎn)$(\sqrt{3},2)$的雙曲線的標(biāo)準(zhǔn)方程是$\frac{y^2}{3}-\frac{x^2}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知x>0,y>0,z>0,化簡(jiǎn)3x${\;}^{\sqrt{2}}$(2x${\;}^{-\sqrt{2}}$yz)的結(jié)果是(  )
A.0B.6C.6xyzD.6yz

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={x||x|<1},B={x|x2-2x>0},則A∩(∁RB)等于( 。
A.(-1,0]B.(-1,0)C.[0,1)D.(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案