對于定義域為[0,1]的函數(shù)f(x),如果同時滿足以下三條:①對任意的x∈[0,1],總有f(x)≥0;②f(1)③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,則稱函數(shù)f(x)為理想函數(shù).
(1)若函數(shù)f(x)為理想函數(shù),求f(0)的值;
(2)判斷函數(shù)g(x)=2x-1(x∈[0,1])是否為理想函數(shù),并予以證明;
(3)若函數(shù)f(x)為理想函數(shù),假定?x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求證f(x0)=x0
分析:(1)取x1=x2=0可得f(0)≥f(0)+f(0)?f(0)≤0,由此可求出f(0)的值.
(2)g(x)=2x-1在[0,1]滿足條件①g(x)≥0,也滿足條件②g(1)=1.若x1≥0,x2≥0,x1+x2≤1,滿足條件③,收此知故g(x)理想函數(shù).
(3)由條件③知,任給m、n∈[0,1],當(dāng)m<n時,由m<n知n-m∈[0,1],f(n)=f(n-m+m)≥f(n-m)+f(m)≥f(m).由此能夠推導(dǎo)出f(x0)=x0
解答:解:(1)取x1=x2=0可得f(0)≥f(0)+f(0)?f(0)≤0.(1分)
又由條件①f(0)≥0,故f(0)=0.(3分)
(2)顯然g(x)=2x-1在[0,1]滿足條件①g(x)≥0;(4分)
也滿足條件②g(1)=1.(5分)
若x1≥0,x2≥0,x1+x2≤1,
g(x1+x2)-[g(x1)+g(x2)]=2x1+x2-1-[(2x1-1)+(2x2-1)]=2x1+x2-2x1-2x2+1=(2x2-1)(2x1-1)≥0,即滿足條件③,(8分)
故g(x)理想函數(shù).(9分)
(3)由條件③知,任給m、n∈[0,1],當(dāng)m<n時,由m<n知n-m∈[0,1],
∴f(n)=f(n-m+m)≥f(n-m)+f(m)≥f(m).(11分)
若x0<f(x0),則f(x0)≤f[f(x0)]=x0,前后矛盾;(13分)
若x0>f(x0),則f(x0)≥f[f(x0)]=x0,前后矛盾.(15分)
故x0=f(x0).(16分)
點評:本題考查函數(shù)值的求法,解題時要認(rèn)真審題,注意挖掘題設(shè)的中的隱含條件,注意性質(zhì)的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為[0,1]的函數(shù)f(x)如果滿足以下三個條件:①對任意的x∈[0,1],總有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)-2成立.則稱函數(shù)f(x)為理想函數(shù).
(1)判斷函數(shù)g(x)=2x+1 (0≤x≤1)是否為理想函數(shù),并予以證明;
(2)求定義域為[0,1]的理想函數(shù)f(x)的最大值和最小值;
(3)某同學(xué)發(fā)現(xiàn):當(dāng)x=
1
2n
(n∈N)時,有f(
1
2n
)≤
1
2n
+2,由此他提出猜想:對一切x∈(0,1],都有f(x)<2x+2,請你根據(jù)該同學(xué)發(fā)現(xiàn)的結(jié)論(或其它方法)來判斷此猜想是否正確,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為[0,1]的函數(shù)f(x),若同時滿足以下三個條件:
①f(1)=1; 
②?x∈[0,1],總有f(x)≥0; 
③當(dāng)x1≥0,x2≥0,x1+x2≤1時,都有f(x1+x2)≥f(x1)+f(x2),則稱函數(shù)f(x)為理想函數(shù).
(Ⅰ)若函數(shù)f(x)為理想函數(shù),求f(0).
(Ⅱ)判斷函數(shù)g(x)=2x-1(x∈[0,1])和函數(shù)h(x)=sin
π2
x
(x∈[0,1])是否為理想函數(shù)?若是,予以證明;若不是,說明理由.
(III)設(shè)函數(shù)f(x)為理想函數(shù),若?x0∈[0,1],使f(x0)∈[0,1],且f[f(x0)]=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為[0,1]的函數(shù)f(x)同時滿足:(1)對于任意x∈[0,1],f(x)≥0;(2)f(1)=1;(3)若x1≥0,x2≥0,則f(x1+x2)≥f(x1)+f(x2).
(Ⅰ)求f(0)的值;
(Ⅱ)問函數(shù)g(x)=f(x)-2x-
1
10
在[
1
2
,1]上是否有零點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于定義域為[0,1]的函數(shù)f(x),如果同時滿足以下三條:①對任意的x∈[0,1],總有f(x)≥0;②f(1)③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,則稱函數(shù)f(x)為理想函數(shù).
(1)若函數(shù)f(x)為理想函數(shù),求f(0)的值;
(2)判斷函數(shù)g(x)=2x-1(x∈[0,1])是否為理想函數(shù),并予以證明;
(3)若函數(shù)f(x)為理想函數(shù),假定?x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求證f(x0)=x0

查看答案和解析>>

同步練習(xí)冊答案