已知數(shù)列{an}的前n項(xiàng)和為Sn=n2,某三角形三邊之比為a2:a3:a4,則該三角形最大角為________.

120°
分析:由數(shù)列{an}的前n項(xiàng)和為Sn=n2可以求得a2,a3,a3,再利用余弦定理即可求得該三角形最大角.
解答:由Sn=n2得a2=s2-s1=4-1=3,同理得a3=5,a4=7,
∵3,5,7作為三角形的三邊能構(gòu)成三角形,
∴可設(shè)該三角形三邊為3,5,7,令該三角形最大角為θ,
=
又 0°<θ<180°
∴θ=120°.
故答案為:120°.
點(diǎn)評(píng):本題考查余弦定理,關(guān)鍵是利用等差數(shù)列的前n項(xiàng)和公式求得三角形三邊之比為a2:a3:a4,為容易題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案