設函數(shù)(其中).
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,求函數(shù)在上的最大值.
(Ⅰ)函數(shù)的遞減區(qū)間為,遞增區(qū)間為,.
(Ⅱ)函數(shù)在上的最大值.
解析試題分析:(Ⅰ)通過“求導數(shù)、求駐點、討論導數(shù)的正負、確定函數(shù)的單調(diào)區(qū)間”,本題利用“表解法”,直觀,易于理解.
(Ⅱ)求函數(shù)的最值,通過“求導數(shù)、求駐點、討論導數(shù)的正負、確定函數(shù)的極值、比較區(qū)間端點函數(shù)值”等步驟,不斷地構造函數(shù)加以轉(zhuǎn)化,是解答本題的關鍵.
試題解析:
(Ⅰ)當時,
,
令,得, 2分
當變化時,的變化如下表:
右表可知,函數(shù)的遞減區(qū)間為,遞增區(qū)間為,.極大值 極小值
6分
(Ⅱ),
令,得,, 7分
令,則
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù),其中.
(1)若,求在的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實數(shù)的取值范圍;
(3)是否存在最小的正整數(shù),使得當時,不等式恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),且在時函數(shù)取得極值.
(1)求的單調(diào)增區(qū)間;
(2)若,
(Ⅰ)證明:當時,的圖象恒在的上方;
(Ⅱ)證明不等式恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在處的切線與軸平行.
(1)求的值和函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象與拋物線恰有三個不同交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù),其中.
(1)若,求在的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實數(shù)的取值范圍;
(3)是否存在最小的正整數(shù),使得當時,不等式恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中.
(1)當時判斷的單調(diào)性;
(2)若在其定義域為增函數(shù),求正實數(shù)的取值范圍;
(3)設函數(shù),當時,若,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com