已知f(x)=x3+2bx2+cx+1在區(qū)間[-1,2]上是減函數(shù),那么2b+c( 。
A、有最大值-
15
2
B、有最大值
15
2
C、有最小值-
15
2
D、有最小值
15
2
分析:首先求出函數(shù)的導數(shù),然后根據(jù)導數(shù)與函數(shù)單調(diào)性的關系進行判斷.
解答:解:由題意得f′(x)=3x2+4bx+c,
∵f(x)=x3+2bx2+cx+1在區(qū)間[-1,2]上是減函數(shù),
∴f′(-1)=3-4b+c≤0,①f′(2)=12+8b+c≤0,②
①+②可得:15+4b+2c≤0,
變形可得2b+c≤-
15
2
,
∴2b+c有最大值-
15
2

故選A.
點評:掌握并會熟練運用導數(shù)與函數(shù)單調(diào)性的關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函數(shù)f(x)的單調(diào)遞減區(qū)間為(
13
,1),求函數(shù)f(x)的解析式;
(2)若f(x)的導函數(shù)為f′(x),對任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲線y=f(x)在x=-1處的切線與直線2x-y-1=0平行,求a的值;
(2)當a=-2時,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x3+x-2在點P處的切線與直線y=4x-1平行,則切點P的坐標是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,則f(2013)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x3+3x2+a(a為常數(shù)) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步練習冊答案