精英家教網 > 高中數學 > 題目詳情
關于函數f(x)=4sin(2x+
π
3
)(x∈R),有下列命題:
①由f(x1)=f(x2)=0可得x1-x2必是π的整數倍;
②y=f(x)的表達式可改寫為y=4cos(2x-
π
6
);
③y=f(x)的圖象關于點(-
π
6
,0)對稱;
④y=f(x)的圖象關于直線x=-
12
對稱.
其中正確命題的序號是
②③④
②③④
分析:①函數的周期T=
2
,函數值等于0的x之差的最小值為
T
2
,所以x1-x2必是的
π
2
整數倍.
②利用誘導公式進行化簡判斷.
③利用三角函數的圖象和性質判斷f(-
π
6
)=0是否成立.
④利用三角函數的圖象和性質判斷.
解答:解:①∵函數的周期T=
2
,函數值等于0的x之差的最小值為
T
2
,∴x1-x2必是
π
2
的整數倍,∴①錯誤.
②f(x)=4sin(2x+
π
3
)=4cos[
π
2
-(2x+
π
3
)
]=4cos(
π
6
-2x
)=4cos(2x-
π
6
),∴②正確.
③∵f(-
π
6
)=4sin[2×(-
π
6
)
+
π
3
]=4sin(-
π
3
+
π
3
)=0,∴y=f(x)的圖象關于點(-
π
6
,0)對稱,∴③正確.
④∵f(-
12
)=4sin[2×(-
12
)
+
π
3
]=4sin(
π
3
-
6
)=4sin(-
π
2
)=-4,為函數的最小值,∴y=f(x)的圖象關于直線x=-
12
對稱,即④正確.
故答案為:②③④.
點評:本題主要考查三角函數的圖象和性質,要求熟練掌握三角誘導公式,和三角函數的性質的綜合應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

關于函數f(x)=2(sinx-cosx)cosx的四個結論:
P1:最大值為
2
;
P2:最小正周期為π;
P3:單調遞增區(qū)間為[kπ-
π
8
,kπ+
3
8
π],k∈
Z;
P4:圖象的對稱中心為(
k
2
π+
π
8
,-1),k∈
Z.
其中正確的有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

關于函數f(x)=sin2x-cos2x有下列命題:
①函數y=f(x)的周期為π;                
②直線x=
π
4
是y=f(x)圖象的一條對稱軸;
點(
π
8
,0)
是y=f(x)圖象的一個對稱中心;
(-
π
8
,
8
)
是函數y=f(x)的一個單調遞減區(qū)間.
其中真命題的序號是
①③
①③

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•鹽城一模)給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x},即 {x}=m.在此基礎上給出下列關于函數f(x)=|x-{x}|的四個命題:
(1)y=f(x)的定義域是R,值域是[0,
1
2
]
(2)y=f(x)是周期函數,最小正周期是1
(3)y=f(x)的圖象關于直線x=
k
2
(k∈Z)對稱
(4)y=f(x)在[-
1
2
,
1
2
]
上是增函數   
則其中真命題是
(1)、(2)、(3)
(1)、(2)、(3)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知下表為函數f(x)=ax3+cx+d部分自變量取值及其對應函數值,為便于研究,相關函數值非整數值時,取值精確到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.026 0.21 0.20 -0.22 -0.03 0 -226.05
下列關于函數f(x)的敘述:
(1)f(x)為奇函數;                          (2)f(x)在[0.55,0.6]上必有零點
(3)f(x)在(-∞,-0.35]上單調遞減;         (4)a<0
其中所有正確命題的個數是(  )

查看答案和解析>>

科目:高中數學 來源:2014屆福建省四地六校高三上學期第一次月考文科數學試卷(解析版) 題型:填空題

關于函數f(x)= 4 sin(2x+)(),有下列命題:

①由可得必是的整數倍;

的表達式可改寫為;

的圖象關于點對稱;

的圖象關于直線對稱.

其中正確命題的序號是________________.

 

查看答案和解析>>

同步練習冊答案