4.函數(shù)f(x)=xex-1的單調(diào)遞增區(qū)間是( 。
A.(-∞,-1)B.(0,1)C.(1,2)D.(-1,+∞)

分析 對(duì)函數(shù)f(x)=xex-1進(jìn)行求導(dǎo),然后令導(dǎo)函數(shù)大于0求出x的范圍,即可得到答案.

解答 解:由函數(shù)f(x)=xex-1,得f′(x)=ex-1+xex-1=ex-1(x+1),
因?yàn)閑x-1>0,由f′(x)=ex-1(x+1)>0,得:x>-1.
所以,函數(shù)f(x)=xex-1的單調(diào)遞增區(qū)間是(-1,+∞).
故選:D

點(diǎn)評(píng) 本題主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減,此題是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果|x|≤$\frac{π}{4}$,那么函數(shù)y=cos2x-3cosx+2的最小值是( 。
A.2B.$-\frac{1}{4}$C.0D.$\frac{{5-3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\sqrt{3-x}$+log2(x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.[1,3)?B.( 1,3)?C.(-1,3]D.[-1,3]?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“今天北京的降雨概率是80%,上海的降雨概率是20%”,下列說法不正確的是( 。
A.北京今天一定降雨,而上海一定不降雨
B.上海今天可能降雨,而北京可能沒有降雨
C.北京和上海都可能沒降雨
D.北京降雨的可能性比上海大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)是定義域?yàn)镽的奇函數(shù),且當(dāng)x1<x2時(shí),(x1-x2)[f(x1)-f(x2)]>0,設(shè)p:“f(m2+3)+f(12-8m)<0”.
(1)若p為真,求實(shí)數(shù)m的取值范圍;
(2)設(shè)q:集合A={x|(x+1)(4-x)≤0}與集合B={x|x<m}的交集為{x|x≤-1},若p∧q為假,p∨q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“λ<1”是“數(shù)列{n2-2λn}(n∈N*)為遞增數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某縣城出租車的收費(fèi)標(biāo)準(zhǔn)是:起步價(jià)是5元(乘車不超過3公里);行駛3公里后,每公里車費(fèi)1.2元;行駛10公里后,每公里車費(fèi)1.8元.
(1)寫出車費(fèi)與路程的關(guān)系式;
(2)一顧客行程30公里,為了省錢,他設(shè)計(jì)了三種乘車方案:
①不換車:乘一輛出租車行30公里
②分兩段乘車:乘一車行15公里,換乘另一車再行15公里;
③分三段乘車:每乘10公里換一次車.
問哪一種方案最省錢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知100件產(chǎn)品中有10件次品,從中任取3件,則任意取出的3件產(chǎn)品中次品數(shù)的數(shù)學(xué)期望為0.3,方差為0.2645.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在四棱錐P-ABCD中,底面ABCD為矩形,平面PAB⊥平面ABCD,AB=AP=3,AD=PB=2,E為線段AB上一點(diǎn),且AE:EB=7:2,點(diǎn)F,G,M分別為線段PA、PD、BC的中點(diǎn).
(1)求證:PE⊥平面ABCD;
(2)若平面EFG與直線CD交于點(diǎn)N,求二面角P-MN-A的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案