A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
分析 設(shè)(a,${(\frac{3}{2})}^{a}$)是曲線$C:y={(\frac{3}{2})}^{x}$上一點(diǎn),則直線OC的斜率k=$\frac{(\frac{3}{2})^{a}}{a}$,利用導(dǎo)數(shù)法求出k的最值,可得答案.
解答 解:設(shè)(a,${(\frac{3}{2})}^{a}$)是曲線$C:y={(\frac{3}{2})}^{x}$上一點(diǎn),
則直線OC的斜率k=$\frac{(\frac{3}{2})^{a}}{a}$,
則k′=$\frac{{(ln\frac{3}{2}•a-1)•(\frac{3}{2})}^{a}}{{a}^{2}}$,
令k′=0,則a=${log}_{\frac{3}{2}}e$,
當(dāng)a<${log}_{\frac{3}{2}}e$時(shí),k′<0,當(dāng)a>${log}_{\frac{3}{2}}e$時(shí),k′>0,
故a=${log}_{\frac{3}{2}}e$時(shí),k=$\frac{(\frac{3}{2})^{a}}{a}$取最小值值e•ln$\frac{3}{2}$,
由e•ln$\frac{3}{2}$$≥\sqrt{3}$可得:
∠BOA>$\frac{π}{3}$恒成立,
故不存在這樣的正三角形,
故選:A.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是直線的斜率,利用導(dǎo)數(shù)研究函數(shù)的最值,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{14}$ | B. | $\sqrt{13}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{5}{2}$ | C. | 2 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
身高(cm) | [160,165) | [165,170) | [170,175) | [175,180) | [180,185) | [185,190) |
頻數(shù) | 2 | 5 | 13 | 13 | 5 | 2 |
身高(cm) | [150,155) | [155,160) | [160,165) | [165,170) | [170,175) | [175,180) |
頻數(shù) | 1 | 8 | 12 | 5 | 3 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,5,7} | B. | {3,5,7} | C. | {3,9} | D. | {1,3} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com