若直線與連接兩點(diǎn)的線段相交,則實(shí)數(shù)a的取值范圍(    )

       A.                                            B.

       C.                            D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
3
2
,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為(-a,0).
(i)若|AB|=
4
2
5
,求直線l的傾斜角;
(ii)若點(diǎn)Q(0,y0)在線段AB的垂直平分線上,且
QA
QB
=4
.求y0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)

已知橢圓(a>b>0)的離心率e=,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為(-a,0).

      (i)若,求直線l的傾斜角;

      (ii)若點(diǎn)Q在線段AB的垂直平分線上,且.求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)

已知橢圓(a>b>0)的離心率e=,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為(-a,0).

      (i)若,求直線l的傾斜角;

      (ii)若點(diǎn)Q在線段AB的垂直平分線上,且.求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北冀州中學(xué)高二年級(jí)下學(xué)期第三次月考題(文) 題型:解答題

已知橢圓(a>b>0)的離心率e=,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為
(i)若,求直線l的傾斜角;
(ii)若點(diǎn)Q在線段AB的垂直平分線上,且.求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測(cè)考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè),分別是橢圓的左、右焦點(diǎn),過(guò)作傾斜角為的直線交橢圓,兩點(diǎn), 到直線的距離為,連接橢圓的四個(gè)頂點(diǎn)得到的菱形面積為.

1)求橢圓的方程;

2)已知點(diǎn),設(shè)是橢圓上的一點(diǎn),過(guò)、兩點(diǎn)的直線軸于點(diǎn),, 的取值范圍;

3)作直線與橢圓交于不同的兩點(diǎn),,其中點(diǎn)的坐標(biāo)為,若點(diǎn)是線段垂直平分線上一點(diǎn),且滿足,求實(shí)數(shù)的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案