已知拋物線y2=2px(p>0),F(xiàn)為其焦點(diǎn),l為其準(zhǔn)線,過F任作一條直線交拋物線于A、B兩點(diǎn),A'、B'分別為A、B在l上的射影,M為A'B'的中點(diǎn),給出下列命題:
①A'F⊥B'F;
②AM⊥BM;
③A'F∥BM;
④A'F與AM的交點(diǎn)在y軸上;
⑤AB'與A'B交于原點(diǎn).
其中真命題的個(gè)數(shù)為( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
【答案】分析:①由于A,B在拋物線上,根據(jù)拋物線的定義可知A'F=AF,B'F=BF,從而由相等的角,由此可判斷A'F⊥B'F;
②取AB中點(diǎn)C,利用中位線即拋物線的定義可得CM=,從而AM⊥BM;
③由②知,AM平分∠A′AF,從而可得A′F⊥AM,根據(jù)AM⊥BM,利用垂直于同一直線的兩條直線平行,可得結(jié)論;
④取AB⊥x軸,則四邊形AFMA'為矩形,則可得結(jié)論;
⑤取AB⊥x軸,則四邊形ABB'A'為矩形,則可得結(jié)論.
解答:解:①由于A,B在拋物線上,根據(jù)拋物線的定義可知A'F=AF,B'F=BF,因?yàn)锳′、B′分別為A、B在l上的射影,所以A'F⊥B'F;
②取AB中點(diǎn)C,則CM=,∴AM⊥BM;
③由②知,AM平分∠A′AF,∴A′F⊥AM,∵AM⊥BM,∴A'F∥BM;
④取AB⊥x軸,則四邊形AFMA′為矩形,則可知A'F與AM的交點(diǎn)在y軸上;
⑤取AB⊥x軸,則四邊形ABB'A'為矩形,則可知AB'與A'B交于原點(diǎn)
故選D.
點(diǎn)評:本題以拋物線為載體,考查拋物線的性質(zhì),解題的關(guān)鍵是合理運(yùn)用拋物線的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0).過動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l.
(1)求拋物線上任意一點(diǎn)Q到定點(diǎn)N(2p,0)的最近距離;
(2)過點(diǎn)F作一直線與拋物線相交于A,B兩點(diǎn),并在準(zhǔn)線l上任取一點(diǎn)M,當(dāng)M不在x軸上時(shí),證明:
kMA+kMBkMF
是一個(gè)定值,并求出這個(gè)值.(其中kMA,kMB,kMF分別表示直線MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0).過動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過點(diǎn)M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0),M(2p,0),A、B是拋物線上的兩點(diǎn).求證:直線AB經(jīng)過點(diǎn)M的充要條件是OA⊥OB,其中O是坐標(biāo)原點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案