如圖,已知圓心坐標(biāo)為的圓軸及直線均相切,切點分別為、,另一圓與圓、軸及直線均相切,切點分別為、。
(1)求圓和圓的方程;
(2)過點作的平行線,求直線被圓截得的弦的長度;
 
(1)圓的方程為,圓的方程為
(2)

試題分析:(1)根據(jù)圓的圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程.(2)直線和圓相交,根據(jù)半徑,弦長的一半,圓心距求弦長.(3)圓的弦長的常用求法:(1)幾何法:求圓的半徑,弦心距,弦長,則
(2)代數(shù)方法:運用根與系數(shù)的關(guān)系及弦長公式.
試題解析:解(1)由于圓的兩邊相切,故的距離均為圓的半徑,則
的角平分線上,同理,也在的角平分線上,
三點共線,且的角平分線,
的坐標(biāo)為,軸的距離為1,即:圓的半徑為1,
的方程為;                            3分
設(shè)圓的半徑為,由,得:,
,的方程為:;  6分
(2)由對稱性可知,所求弦長等于過點的的平行線被圓截得的弦長,
此弦所在直線方程為,即,
圓心到該直線的距離,則弦長=    3分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求經(jīng)過兩直線l1:x-2y+4=0和l2:x+y-2=0的交點P,且與直線l3:3x-4y+5=0垂直的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,AB邊上的高所在直線方程為x+2y+1=0,∠C的平分線所在直線方程為y-1=0,若點A的坐標(biāo)為(0,-1),求點B和C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,已知點A(1,
4
)和B(2,
π
4
)
,則A、B兩點間的距離是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩個點M(-3,0)和N(3,0),若直線上存在點P,使|PM|+|PN|=10,則稱該直線為“A型直線”,則下列直線
①x=6②y=-5③y=x④y=2x+1中為“A型直線”的是______(填上所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線x=2被圓所截弦長等于,則a的值為    (     )
A.-1或-3B.C.1或3D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點的直線l與圓有公共點,則直線l的傾斜角的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知實數(shù)x、y滿足x2+y2=4,則的最小值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,EA是圓O的切線,割線EB交圓O于點C,C在直徑AB上的射影為D,CD=2,BD=4,則EA=________.

查看答案和解析>>

同步練習(xí)冊答案