集合A={a2,a+1,-1},B={2a-1,|a-2|,3a2+4},A∩B={-1},則a的值是(  )
分析:由集合A有一個(gè)元素為-1,根據(jù)兩集合的交集中元素為-1,得出集合B中必然有一個(gè)元素為-1,分別令集合B中的元素等于-1列出關(guān)于a的方程,求出方程的解即可得出結(jié)果.
解答:解:∵A={a2,a+1,-1},B={2a-1,|a-2|,3a2+4},A∩B={-1},
∴集合B中必然有一個(gè)元素為-1
∵|a-2|≥0或3a2+4≥4
∴2a-1=-1
解得:a=0,
故選C
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、若集合A={a2,a+1,-1},B={2a-1,|a-2|,3a2+4},且A∩B={-1},則a=
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a2,a+1,-3},B={a-3,a2+1,2a-1},若A∩B={-3},
(Ⅰ)求實(shí)數(shù)a的值.
(Ⅱ)設(shè)f(x)=
x2-4x+6,x≥0
x+6,x<0
,求不等式f(x)>f(-a)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京高考真題 題型:解答題

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個(gè)相應(yīng)的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A},其中(a,b)是有序數(shù)對(duì),集合S和T中的元素個(gè)數(shù)分別為m和n,若對(duì)于任意的a∈A,總有-aA,則稱集合A具有性質(zhì)P。
(1)檢驗(yàn)集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對(duì)其中具有性質(zhì)P的集合,寫出相應(yīng)的集合S和T;
(2)對(duì)任何具有性質(zhì)P的集合A,證明: n≤;
(3)判斷m和n的大小關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:月考題 題型:解答題

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個(gè)相應(yīng)的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a﹣b∈A}.其中(a,b)是有序數(shù)對(duì),集合S和T中的元素個(gè)數(shù)分別為m和n.若對(duì)于任意的a∈A,總有﹣aA,則稱集合A具有性質(zhì)P.
(I)檢驗(yàn)集合{0,1,2,3}與{﹣1,2,3}是否具有性質(zhì)P并對(duì)其中具有性質(zhì)P的集合,寫出相應(yīng)的集合S和T;
(II)對(duì)任何具有性質(zhì)P的集合A,證明: ;
(III)判斷m和n的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案