已知函數(shù)f(x)=kax-a-x(a>0且a≠1)是奇函數(shù).
(1)求實(shí)數(shù)k的值;
(2)若a>1,判斷函數(shù)的單調(diào)性(不需要證明);
(3)若a>1,試求不等式f(x2+2x)+f(x-4)>0的解集.
分析:(1)根據(jù)f(x)是定義域?yàn)镽的奇函數(shù),可得f(0)=0,由此求得實(shí)數(shù)k的值.
(2)由a>1,可得函數(shù)f(x)=ax-a-x=ax-
1
ax
在R上是增函數(shù).
(3)原不等式化為f(x2+2x)>f(4-x),由函數(shù)的單調(diào)性可得x2+2x>4-x,解此一元二次不等式,求得不等式的解集.
解答:解:(1)∵f(x)是定義域?yàn)镽的奇函數(shù),∴f(0)=0,∴k-1=0,∴k=1,經(jīng)檢驗(yàn)k=1符合題意.…..(3分)
(2)因?yàn)閍>1,所以函數(shù)f(x)=ax-a-x=ax-
1
ax
在R上是增函數(shù).  …..(6分)
(3)原不等式化為f(x2+2x)>f(4-x),…..(7分)
因?yàn)樵赗上單調(diào)遞增,故有x2+2x>4-x,即x2+3x-4>0,
解得x>1或x<-4,因此,不等式的解集為{x|x>1或x<-4}.…..(10分)
點(diǎn)評:本題主要考查函數(shù)的奇偶性和單調(diào)性,一元二次不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設(shè)t=logax+logxa.
(Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時(shí),將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
(Ⅱ)當(dāng)k=4時(shí),若對?x1∈(1,+∞),?x2∈[1,2],使f(x1)≤g(x2),試求實(shí)數(shù)b的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
k+1x
(k<0),求使得f(x+k)>1成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=k•a-x(k,a為常數(shù),a>0且a≠1)的圖象過點(diǎn)A(0,1),B(3,8).
(1)求實(shí)數(shù)k,a的值;
(2)若函數(shù)g(x)=
f(x)-1f(x)+1
,試判斷函數(shù)g(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖二模)給出以下五個(gè)命題:
①命題“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函數(shù)f(x)=k•cosx的圖象經(jīng)過點(diǎn)P(
π
3
,1),則函數(shù)圖象上過點(diǎn)P的切線斜率等于-
3

③a=1是直線y=ax+1和直線y=(a-2)x-1垂直的充要條件.
④函數(shù)f(x)=(
1
2
)x-x
1
3
在區(qū)間(0,1)上存在零點(diǎn).
⑤已知向量
a
=(1,-2)
與向量
b
=(1,m)
的夾角為銳角,那么實(shí)數(shù)m的取值范圍是(-∞,
1
2

其中正確命題的序號是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設(shè)t=logax+logxa.
(Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時(shí),試將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
(Ⅱ)當(dāng)k=4時(shí),若對任意的x1∈(1,+∞),存在x2∈[1,2],使f(x1)≤g(x2),試求實(shí)數(shù)b的取值范圍..

查看答案和解析>>

同步練習(xí)冊答案