如果a=(1,x),b=(-1,3),且(2a+b)∥(a-2b),則x=                  (    )

    A.-3 B.3    C. D.

 

【答案】

 A;解析:∵2a+b=(1,2x+3),a-2b=(3,x-6);

又2a+b∥a-2b,∴1×(x-6)-(2x+3)×3=0,解得x= -3.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分
(1)二階矩陣M對(duì)應(yīng)的變換將向量
1
-1
-2
1
分別變換成向量
3
-2
,
-2
1
,直線l在M的變換下所得到的直線l′的方程是2x-y-1=0,求直線l的方程.
(2)過點(diǎn)P(-3,0)且傾斜角為30°的直線l和曲線C:
x=s+
1
s
y=s-
1
s
(s為參數(shù))相交于A,B兩點(diǎn),求線段AB的長(zhǎng).
(3)若不等式|a-1|≥x+2y+2z,對(duì)滿足x2+y2+z2=1的一切實(shí)數(shù)x,y,z恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x-a(x+1)ln(x+1),(a≥0).
(1)如果a=1,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-1,e-1)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)證明:當(dāng)m>n>0時(shí),(1+m)n<(1+n)m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

如果(a+1)xa+1的解集是x1,則a必須滿足   

[  ]

Aa0   Ba-1   Ca-1   Da-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年度新課標(biāo)高三上學(xué)期數(shù)學(xué)單元測(cè)試5-理科-平面向量與解三角形 題型:選擇題

 如果a=(1,x),b=(-1,3),且(2a+b)∥(a-2b),則x=                  (    )

    A.-3      B.3    C.     D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案