【題目】已知數(shù)列的首項(xiàng)為,設(shè)其前n項(xiàng)和為,且對(duì)

1)設(shè),求證:數(shù)列為等差數(shù)列;

2)求數(shù)列的通項(xiàng)公式;

3)是否存在正整數(shù)m,k,使得,,成等差數(shù)列?若存在,求出m,k的值;若不存在,說明理由.

【答案】(1)見解析;(2);(2)存在,,

【解析】

1)根據(jù)的關(guān)系可得,由遞推關(guān)系知為等差數(shù)列,即可求出通項(xiàng)公式(2)由(1)知,可得,根據(jù)累乘法即可求出3)由裂項(xiàng)相消法求出,假設(shè)存在正整數(shù)m,k,使,,成等差數(shù)列,根據(jù)等差中項(xiàng)化簡(jiǎn)計(jì)算可得,存在正整數(shù)m,k使,成等差數(shù)列.

1)因?yàn)?/span>①,

所以時(shí),,得

當(dāng)時(shí),②,

-②得,

因?yàn)?/span>,所以

當(dāng)時(shí),有

所以數(shù)列為等差數(shù)列.

2)因?yàn)?/span>,公差,得

所以,得

所以,

,即

3

因?yàn)?/span>,成等差數(shù)列,所以,即

化簡(jiǎn)得

因?yàn)?/span>,所以時(shí),,(舍去);時(shí),,;

時(shí),,

綜上,存在,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,.

(1)求證:

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國(guó)人均讀書4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國(guó)的11本、法國(guó)的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國(guó)家.”這個(gè)論斷被各種媒體反復(fù)引用,出現(xiàn)這樣的統(tǒng)計(jì)結(jié)果無疑是令人尷尬的,而且和其他國(guó)家相比,我國(guó)國(guó)民的閱讀量如此之低,也和我國(guó)是傳統(tǒng)的文明古國(guó)、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動(dòng),準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對(duì)小區(qū)內(nèi)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天40名讀書者進(jìn)行調(diào)查,將他們的年齡分成6段: , , , 后得到如圖所示的頻率分布直方圖.

問:

(1)估計(jì)在40名讀書者中年齡分布在的人數(shù);

(2)求40名讀書者年齡的平均數(shù)和中位數(shù);

(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}n項(xiàng)和為Sn,滿足Sn+14an+2nN+),且a11,

1)若cn,求證:數(shù)列{cn}是等差數(shù)列.

2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,該幾何體由半圓柱體與直三棱柱構(gòu)成,半圓柱體底面直徑,,,D為半圓弧的中點(diǎn),若異面直線BD所成角的大小為

1)證明:平面

2)求該幾何體的表面積和體積;

3)求點(diǎn)D到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的所有棱長(zhǎng)都是2,平面ABCD,E分別是AC,的中點(diǎn).

求證:平面;

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】①一個(gè)命題的逆命題為真,它的否命題也一定為真;

②在中,“”是“三個(gè)角成等差數(shù)列”的充要條件.

的充要條件;

④命題不等式x2x6>0的解為x<3x>2”的逆否命題是“若-3≤x≤2,則x2x6≤0

以上說法中,判斷錯(cuò)誤的有___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象向左平移個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到的圖象,下面四個(gè)結(jié)論正確的是( )

A. 函數(shù)在區(qū)間上為增函數(shù)

B. 將函數(shù)的圖象向右平移個(gè)單位后得到的圖象關(guān)于原點(diǎn)對(duì)稱

C. 點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心

D. 函數(shù)上的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年11月15日,我市召開全市創(chuàng)建全國(guó)文明城市動(dòng)員大會(huì),會(huì)議向全市人民發(fā)出動(dòng)員令,吹響了集結(jié)號(hào).為了了解哪些人更關(guān)注此活動(dòng),某機(jī)構(gòu)隨機(jī)抽取了年齡在15~75歲之間的100人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如圖所示,其分組區(qū)間為:,,,,.把年齡落在內(nèi)的人分別稱為“青少年人”和“中老年人”,經(jīng)統(tǒng)計(jì)“青少年人”與“中老年人”的人數(shù)之比為.

(1)求圖中的值,若以每個(gè)小區(qū)間的中點(diǎn)值代替該區(qū)間的平均值,估計(jì)這100人年齡的平均值;

(2)若“青少年人”中有15人關(guān)注此活動(dòng),根據(jù)已知條件完成題中的列聯(lián)表,根據(jù)此統(tǒng)計(jì)結(jié)果,問能否有的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注此活動(dòng)?

關(guān)注

不關(guān)注

合計(jì)

青少年人

15

中老年人

合計(jì)

50

50

100

0.050

0.010

0.001

3.841

6.635

10.828

附參考公式:,其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案