【題目】如圖,在四棱柱中,平面,,, ,, 為的中點(diǎn).
(Ⅰ)求CE與DB所成角的余弦值;
(Ⅱ)設(shè)點(diǎn)在線段上,且直線與平面所成角的正弦值為,求線段的長度
【答案】(Ⅰ) (Ⅱ)
【解析】
(Ⅰ)由平面,,可得,,兩兩垂直,建立空間直角坐標(biāo)系,得出與的坐標(biāo),即可求得CE與DB所成角的余弦值;(Ⅱ)利用共線向量基本定理把M的坐標(biāo)用E和C1的坐標(biāo)及待求系數(shù)λ表示,求出平面的一個(gè)法向量,利用向量求線面角的公式求出直線AM與平面所成角的正弦值,代入求出λ的值,則線段AM的長可求.
(Ⅰ)由平面,,可得,,兩兩垂直,所以分別以,,所在直線為軸,軸,軸,如圖建立空間直角坐標(biāo)系,
則,,,,.
,,,
(Ⅱ)所以,,,.
設(shè)平面的一個(gè)法向量為,
由,,得
令,得.
設(shè),其中,
則,
記直線與平面所成角為,
則span>,
解得(舍),或. 所以,
故線段的長度為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且(a+b+c)(a+b﹣c)=3ab.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,且△ABC為銳角三角形,求a+b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+a|+|x﹣ |(a≠0).
(1)當(dāng)a=1時(shí),解不等式f(x)<4;
(2)求函數(shù)g(x)=f(x)+f(﹣x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且離心率
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)是否存在過點(diǎn)的直線交橢圓與不同的兩點(diǎn),且滿足 (其中為坐標(biāo)原點(diǎn))。若存在,求出直線的方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,是邊長為4的正三角形, ,分別為的中點(diǎn),且.
(1)證明:平面ABC;
(2)求二面角的余弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:x+2y﹣4=0與坐標(biāo)軸交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則經(jīng)過O、A、B三點(diǎn)的圓的標(biāo)準(zhǔn)方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1﹣ ,a∈R.
(1)若函數(shù)g(x)=(x﹣1)f(x)在(0,1)上有且只有一個(gè)極值點(diǎn),求a的范圍;
(2)當(dāng)a≤﹣1時(shí),證明:f(x)lnx>0對于任意x∈(0,1)∪(1,+∞)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線C上一點(diǎn),且P在第一象限,PM⊥l于點(diǎn)M,線段MF與拋物線C交于點(diǎn)N,若PF的斜率為 ,則 =( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a>b>1,0<c<1,則( )
A.ac<bc
B.abc<bac
C.alogbc<blogac
D.logac<logbc
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com