已知p:|x-a|<4;q:(x-2)(x-3)<0,若¬p是¬q的充分不必要條件,求a的取值范圍.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:求出命題p,q的等價(jià)條件,利用¬p是¬q的充分不必要條件,轉(zhuǎn)化為q是p的充分不必要條件,即可求出a的取值范圍.
解答: 解:∵|x-a|<4,
∴a-4<x<a+4,
即p:a-4<x<a+4,
∵(x-2)(x-3)<0,
∴2<x<3,
即q:2<x<3.
∵¬p是¬q的充分不必要條件,
∴q是p的充分不必要條件,
a+4≥3
a-4≤2
,(等號(hào)不能同時(shí)取得),
a≥-1
a≤6
,
∴-1≤a≤6,
即a的取值范圍是-1≤a≤6.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的應(yīng)用,利用不等式的解法求出等價(jià)條件是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2013年2月10日春節(jié).某蔬菜基地2013年2月2日有一批黃瓜進(jìn)入市場(chǎng)銷售,通過(guò)市場(chǎng)調(diào)查,預(yù)測(cè)黃瓜的價(jià)格f(x)(單位:元/kg)與時(shí)間x(x表示距2月10日的天數(shù),單位:天,x∈(0,8]且x∈N*)的數(shù)據(jù)如下表:
時(shí)間x862
價(jià)格f(x)8420
(Ⅰ)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述黃瓜價(jià)格f(x)與上市時(shí)間x的變化關(guān)系:f(x)=
ax+b,f(x)=ax2+bx+c,f(x)=a•bx,其中a≠0;并求出此函數(shù);
(Ⅱ)在日常生活中,黃瓜的價(jià)格除了與上市日期相關(guān),與供給量也密不可分.已知供給量h(x)=
1
3
x-
5
18
(x∈N*).在供給量的限定下,黃瓜實(shí)際價(jià)格g(x)=f(x)•h(x).求黃瓜實(shí)際價(jià)格g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的焦點(diǎn)是F1(-2
2
,0),F(xiàn)2(2
2
,0),其上的動(dòng)點(diǎn)P滿足|PF1|+|PF2|=4
3
.點(diǎn)O為坐標(biāo)原點(diǎn),橢圓C的下頂點(diǎn)為R.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ) 設(shè)直線l1:y=x+2與橢圓C的交于A,B兩點(diǎn),求過(guò)O,A,B三點(diǎn)的圓的方程;
(Ⅲ)設(shè)過(guò)點(diǎn)(0,1)且斜率為k的直線l2交橢圓C于M,N兩點(diǎn),試證明:無(wú)論k取何值時(shí),
RM
RN
恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)對(duì)任意x∈R都有f(x)+f(1-x)=
1
2

(1)求f(
1
2
),f(
1
n
)+f(
n-1
n
)(n∈N*)的值;
(2)若數(shù)列{an}滿足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),那么數(shù)列{an}是等差數(shù)列嗎?試證之;
(3)在(2)的條件下,設(shè)bn=4an-1,cn=bnqn-1(q≠0,n∈N*)求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=2cosα,求
sinα-4cosα
5sinα+2cosα
及sin2α+2sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C
(1)求C的方程;
(2)直線l是過(guò)曲線C的右焦點(diǎn),且斜率為2的直線,該直線與曲線C相交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)的導(dǎo)數(shù)f′(x)=3x2-2(a+1)x+a-2,且f(0)=2a,當(dāng)a>2時(shí),求不等式f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一條斜率為1的直線l與離心率為
3
的雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)交于P、Q兩點(diǎn),直線l與y軸交于R點(diǎn),且
OP
OQ
=-3,
PR
=3
RQ
,求直線與雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求經(jīng)過(guò)兩條直線3x+4y-5=0與2x-3y+8=0的交點(diǎn)M,且平行于直線2x+y+5=0的直線方程.(結(jié)果寫一般方程形式)

查看答案和解析>>

同步練習(xí)冊(cè)答案