(1)給出兩塊相同的正三角形紙片(如圖1,圖2),要求用其中一塊剪拼成一個(gè)三棱錐模型,另一塊剪拼成一個(gè)正三棱柱模型,使它們的全面積都與原三角形的面積相等,請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,分別用虛線標(biāo)示在圖1、圖2中,并作簡(jiǎn)要說(shuō)明;
(2)試比較你剪拼的正三棱錐與正三棱柱的體積的大。
(3)如果給出的是一塊任意三角形的紙片(如圖3),要求剪栟成一個(gè)直三棱柱,使它的全面積與給出的三角形的面積相等.請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,用虛線標(biāo)示在圖3中,并作簡(jiǎn)要說(shuō)明.
精英家教網(wǎng)
分析:(1)可以利用正三角形的圖形特征,進(jìn)行分割.
(2)可以直接求解,直接比較大。
(3)分別連接三角形的內(nèi)心與各頂點(diǎn),得三條線段,再以這三條線段的中點(diǎn)為頂點(diǎn)作三角形.以新作的三角形為直棱柱的底面,過(guò)新三角形的三個(gè)頂點(diǎn)向原三角形三邊作垂線,組合就好了.
解答:解:(1)如圖1,沿正三角形三邊中點(diǎn)連線折起,可拼得一個(gè)正三棱錐.
如圖2,正三角形三個(gè)角上剪出三個(gè)相同的四邊形,其較長(zhǎng)的一組鄰邊邊長(zhǎng)為三角形邊長(zhǎng)的
1
4
,有一組對(duì)角為直角,余下部分按虛線折起,可成一個(gè)缺上底的正三棱柱,而剪出的三個(gè)相同的四邊形恰好拼成這個(gè)正三棱錐的上底.
精英家教網(wǎng)

(2)依上面剪拼方法,有V>V
推理如下:
設(shè)給出正三角形紙片的邊長(zhǎng)為2,
那么,正三棱錐與正三棱柱的底面都是邊長(zhǎng)為1的正三角形,其面積為
3
4

現(xiàn)在計(jì)算它們的高:h=
1-(
2
3
3
2
)
2
=
6
3
,h=
1
2
tan30°=
3
6
V-V=(h-
1
3
h)•
3
4
=(
3
6
-
6
9
)•
3
4
=
3-2
2
24
>0

所以V>V

(3)如圖,分別連接三角形的內(nèi)心與各頂點(diǎn),得三條線段,再以這三條線段的中點(diǎn)為頂點(diǎn)作三角形.以新作的三角形為直棱柱的底面,過(guò)新三角形的三個(gè)頂點(diǎn)向原三角形三邊作垂線,沿六條垂線剪下三個(gè)四邊形,可心拼成直三棱柱的上底,余下部分按虛線折起,成為一個(gè)缺上底的直三棱柱,即可得到直三棱柱.
精英家教網(wǎng)
點(diǎn)評(píng):本題考查學(xué)生的空間想象能力,棱錐、棱柱的結(jié)構(gòu)特征,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(02年全國(guó)卷文)(本小題滿分12分,附加題滿分4分)

(I)給出兩塊相同的正三角形紙片(如圖1,圖2),要求用其中一塊剪拼成一個(gè)三棱錐模型,另一塊剪拼成一個(gè)正三棱柱模型,使它們的全面積都與原三角形的面積相等,請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,分別用虛線標(biāo)示在圖1、圖2中,并作簡(jiǎn)要說(shuō)明;

(II)試比較你剪拼的正三棱錐與正三棱柱的體積的大。

(III)(本小題為附加題,如果解答正確,加4分,但全卷總分不超過(guò)150分)

如果給出的是一塊任意三角形的紙片(如圖3),要求剪成一個(gè)直三棱柱,使它的全面積與給出的三角形的面積相等。請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,用虛線標(biāo)示在圖3中,并作簡(jiǎn)要說(shuō)明。

 


查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2002年廣東省高考數(shù)學(xué)試卷(解析版) 題型:解答題

(1)給出兩塊相同的正三角形紙片(如圖1,圖2),要求用其中一塊剪拼成一個(gè)三棱錐模型,另一塊剪拼成一個(gè)正三棱柱模型,使它們的全面積都與原三角形的面積相等,請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,分別用虛線標(biāo)示在圖1、圖2中,并作簡(jiǎn)要說(shuō)明;
(2)試比較你剪拼的正三棱錐與正三棱柱的體積的大;
(3)如果給出的是一塊任意三角形的紙片(如圖3),要求剪栟成一個(gè)直三棱柱,使它的全面積與給出的三角形的面積相等.請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,用虛線標(biāo)示在圖3中,并作簡(jiǎn)要說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2002年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

(1)給出兩塊相同的正三角形紙片(如圖1,圖2),要求用其中一塊剪拼成一個(gè)三棱錐模型,另一塊剪拼成一個(gè)正三棱柱模型,使它們的全面積都與原三角形的面積相等,請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,分別用虛線標(biāo)示在圖1、圖2中,并作簡(jiǎn)要說(shuō)明;
(2)試比較你剪拼的正三棱錐與正三棱柱的體積的大;
(3)如果給出的是一塊任意三角形的紙片(如圖3),要求剪栟成一個(gè)直三棱柱,使它的全面積與給出的三角形的面積相等.請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,用虛線標(biāo)示在圖3中,并作簡(jiǎn)要說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2002年江蘇省高考數(shù)學(xué)試卷(解析版) 題型:解答題

(1)給出兩塊相同的正三角形紙片(如圖1,圖2),要求用其中一塊剪拼成一個(gè)三棱錐模型,另一塊剪拼成一個(gè)正三棱柱模型,使它們的全面積都與原三角形的面積相等,請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,分別用虛線標(biāo)示在圖1、圖2中,并作簡(jiǎn)要說(shuō)明;
(2)試比較你剪拼的正三棱錐與正三棱柱的體積的大。
(3)如果給出的是一塊任意三角形的紙片(如圖3),要求剪栟成一個(gè)直三棱柱,使它的全面積與給出的三角形的面積相等.請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,用虛線標(biāo)示在圖3中,并作簡(jiǎn)要說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案