【題目】某地在國慶節(jié)天假期中的樓房認(rèn)購量(單位:套)與成交量(單位:套)的折線圖如圖所示,小明同學(xué)根據(jù)折線圖對這天的認(rèn)購量與成交量作出如下判斷:①成交量的中位數(shù)為;②認(rèn)購量與日期正相關(guān);③日成交量超過日平均成交量的有天,則上述判斷中正確的個(gè)數(shù)為(

A.B.C.D.

【答案】D

【解析】

天的成交量數(shù)據(jù)列舉出來,計(jì)算出中位數(shù),可判斷①的正誤;根據(jù)散點(diǎn)圖的形狀可判斷②的正誤;計(jì)算出天成交量的平均數(shù),進(jìn)而可判斷③的正誤.綜合可得出結(jié)論.

由圖可知:成交量由小到大分別為、、、、,中位數(shù)為,①錯(cuò)誤;

在“日認(rèn)購量為套”而“日認(rèn)購量為套”,由此可知認(rèn)購量與日期不成正相關(guān),故②錯(cuò)誤;

平均成交量為,超過平均成交量只有天,故③錯(cuò)誤.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|xa|+|x+2|.

1)若a1.解不等式fxx21

2)若a0,b0,c0.fx)的最小值為4bc.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅原理冪勢既同,則積不容異中的指面積,即是高,意思是:若兩個(gè)等高的幾何體在所有等高處的水平截面的面積恒等,則這兩幾何體的體積相等.設(shè)夾在兩個(gè)平行平面之間的幾何體的體積分別為,它們被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為,則恒成立的(

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知頂點(diǎn)是坐標(biāo)原點(diǎn)的拋物線的焦點(diǎn)軸正半軸上,圓心在直線上的圓軸相切,且關(guān)于點(diǎn)對稱.

(1)求的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線交于,與交于,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在離心率為的橢圓上,則該橢圓的內(nèi)接八邊形面積的最大值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為非零實(shí)數(shù).

1)求的極值;

2)當(dāng)時(shí),在函數(shù)的圖象上任取兩個(gè)不同的點(diǎn)、.若當(dāng)時(shí),總有不等式成立,求正實(shí)數(shù)的取值范圍:

3)當(dāng)時(shí),設(shè)、,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了調(diào)查學(xué)生的學(xué)習(xí)情況,由每班隨機(jī)抽取名學(xué)生進(jìn)行調(diào)查,若一班有名學(xué)生,將每一學(xué)生編號(hào)從,請從隨機(jī)數(shù)表的第行第、列(下表為隨機(jī)數(shù)表的前行)開始,依次向右,直到取足樣本,則第五個(gè)編號(hào)為_________.

7816

6514

0802

6314

0702

4369

9728

0198

3204

9234

4935

8200

3623

4869

6938

7481

7816

6514

0802

6314

0702

4369

9728

0198

3204

9234

4935

8200

3623

4869

6938

7481

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若四面體的三組對棱分別相等,即,,,則________.(寫出所有正確結(jié)論的編號(hào))

①四面體每個(gè)面的面積相等

②四面體每組對棱相互垂直

③連接四面體每組對棱中點(diǎn)的線段相互垂直平分

④從四面體每個(gè)頂點(diǎn)出發(fā)的三條棱的長都可以作為一個(gè)三角形的三邊長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=alnx1,gx)=x33tx+1t0).

1)當(dāng)a時(shí),求fx)在區(qū)間[,e]上的最值;

2)討論函數(shù)fx)的單調(diào)性;

3)若gxxexm+2e為自然對數(shù)的底數(shù))對任意x[0,+∞)恒成立時(shí)m的最大值為1,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案