已知函數(shù)f(x)在R上單調(diào)遞減,當(dāng)x+y=1時(shí)恒有f(x)+f(0)>f(y)+f(1)成立,則x的取值范圍是
 
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)單調(diào)性,先判斷f(0)>f(1),再由條件知f(x)≥f(y),再根據(jù)單調(diào)性,得到x≤y,由x+y=1,即可得到x的范圍.
解答: 解:∵函數(shù)f(x)在R上單調(diào)遞減,
∴f(0)>f(1),
∵當(dāng)x+y=1時(shí)恒有f(x)+f(0)>f(y)+f(1)成立,
∴f(x)≥f(y),
∴x≤y,
∵x+y=1,
∴x≤
1
2
,
故答案為:(-∞,
1
2
].
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性及運(yùn)用,注意函數(shù)值相等的情況,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果a<0,-1<b<0,則ab2,a,ab的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足
3x+8y+15≥0
5x+3y-6≤0
2x-5y+10≥0
,則z=x-y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
x2
a2
+
y2
b2
=1(a>b>0),M,N是橢圓的左、右頂點(diǎn),P是橢圓上任意一點(diǎn),且直線PM、PN的斜率分別為k1,k2(k1,k2≠0),若|k1|+|k2|的最小值為1,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)是定義在R上的偶函數(shù),則f(1+
2
)-f(
1
1-
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)圓錐的正(主)視圖和側(cè)(左)視圖都是邊長(zhǎng)為1cm的正三角形,則此圓錐的表面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下四個(gè)命題,其中所有正確命題的序號(hào)為:
 

(1)“b2=ac”是“實(shí)數(shù)a、b、c成等比數(shù)列”的必要而不充分條件;
(2)已知線性回歸方程
y
=3+2x,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值
y
平均增加4個(gè)單位;
(3)函數(shù)f(x)=ex-(
1
2
x在區(qū)間(-1,1)上只有1個(gè)零點(diǎn);
(4)命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2=0”;
(5)設(shè)隨機(jī)變量ξ服從正態(tài)分布N(2,9),若P(ξ>c+1)=P(ξ<c-1),則c等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>0,b>0,則不等式-b<
1
x
<a的解集為( 。
A、{x|-
1
a
<x<0或0<x<
1
b
}
B、{x|-
1
b
<x<0或0<x<
1
a
}
C、{x|x<-
1
a
或x>
1
b
}
D、{x|x<-
1
b
或x>
1
a
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
y2
4
-
x2
5
=1的離心率的值為(  )
A、
1
2
B、
2
3
C、
3
2
D、
5
3

查看答案和解析>>

同步練習(xí)冊(cè)答案