設(shè)f(x),g(x)都是定義在R上的奇函數(shù),且F(x)=3f(x)+5g(x)+2,若F(a)=b則F(-a)等于( 。
A、-b+4B、-b+2
C、b-2D、b+2
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用奇函數(shù)的性質(zhì)可得F(a)+F(-a)=4.即可得出.
解答: 解:∵f(x),g(x)都是定義在R上的奇函數(shù),
∴f(-x)=-f(x),g(-x)=-g(x).
∵F(x)=3f(x)+5g(x)+2,
∴F(a)+F(-a)=3f(a)+5g(a)+2-3f(a)-5g(a)+2=4.
∵F(a)=b,∴F(-a)=4-b.
故選:A.
點評:本題考查了奇函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若規(guī)定一種對應(yīng)關(guān)系f(k),使其滿足:
①f(k)=(m,n)(m<n)且n-m=k;②如果f(k)=(m,n)那么f(k+1)=(n,r)(m,n,r∈N*).若已知f(1)=(2,3),則(1)f(2)=
 
;(2)f(n)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在集合{x|4-x2≥0}上的奇函數(shù)f(x)在區(qū)間[0,2]上是增函數(shù),則( 。
A、f(0)<f(-1)<f(-2)
B、f(-1)<f(-2)<f(0)
C、f(-1)<f(0)<f(-2)
D、f(-2)<f(-1)<f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-6
,若f(a)=3,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=5|x|,g(x)=ax2-x(a∈R),若f[g(1)]=1,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓過兩點A(1,4)、B(3,2)且圓心在x軸上,
(1)求圓的標準方程,并判斷點P(2,4)與圓的位置關(guān)系;
(2)求x-2y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式或不等式組:
(1)
x-1>0
x+1>0

(2)
1-x>0
x+1>0
;
(3)-x2
1
4

(4)x2-x+
1
4
≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,函數(shù)f(x)=tanx在x=-
π
4
處與直線y=ax+b+
π
2
相切,設(shè)g(x)=ex+bx2+a,若在區(qū)間[1,2]上,不等式m≤g(x)≤m2-2恒成立,則實數(shù)m( 。
A、有最小值-e
B、有最小值e
C、有最大值e
D、有最大值e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A={x|x2-3x-10≤0},若B∪A=A,B={x|m+1≤x≤2m-1},則m的取值范圍
 

查看答案和解析>>

同步練習(xí)冊答案