已知函數(shù),,則函數(shù)上遞增是上遞增的(   )

A.充分不必要條件                        B.必要不充分條件

C.充分必要條件                          D.既不充分又不必要條件

 

【答案】

A

【解析】

試題分析:由兩個增函數(shù)的和函數(shù)仍為增函數(shù)知,若函數(shù)上遞增,則為增函數(shù);但當(dāng)時,函數(shù)g(x)在R上單調(diào)遞增,而f(x)在R上單調(diào)遞減,故函數(shù)上遞增是上遞增的充分不必要條件,故選A

考點:本題考查了充要條件的判斷

點評:正確理解函數(shù)的單調(diào)性及充要條件的概念是解決此類問題的關(guān)鍵,屬基礎(chǔ)題

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),g(x)滿足f(5)=5,f′(5)=3,g(5)=4,g′(5)=1,則函數(shù)y=
f(x)+3
g(x)
的圖象在x=5處的切線方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx,x∈[0,
π
2
],試寫出f1(x),f2(x)的表達式,并判斷f(x)是否為[0,
π
2
]上的“k階收縮函數(shù)”,如果是,請求對應(yīng)的k的值;如果不是,請說明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=g(x)是定義在R上的奇函數(shù),當(dāng)x>0時,g(x)=log2x,函數(shù)f(x)=4-x2,則函數(shù)f(x)•g(x)的大致圖象為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省景德鎮(zhèn)市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)滿足,則函數(shù)處的切線是                                                                 (    )

A.                      B.

C.                        D.

 

查看答案和解析>>

同步練習(xí)冊答案