分析:(1)令n=5,利用二項(xiàng)式定理展開,然后化簡(jiǎn)整理可求出a5與b5的值,從而求出所求;
(2)利用數(shù)學(xué)歸納法證明,先奠基,然后假設(shè)假設(shè)當(dāng)n=k時(shí),然后證明當(dāng)n=k+1時(shí)也成立即可.
解答:解:(1)當(dāng)n=5時(shí),
(1+)5=++()2+…+ ()5=[
+()2+()4]+[
+()3+()5]
=41+
29故a
5=29,b
5=41所以a
5+b
5=70
(2)證明:由數(shù)學(xué)歸納法
(i)當(dāng)n=1時(shí),易知b
1=1,為奇數(shù);
(ii)假設(shè)當(dāng)n=k時(shí),
(1+)k=ak+bk,其中b
k為奇數(shù);
則當(dāng)n=k+1時(shí),
(1+)k+1=(1+)k(1+) =(ak+bk)(1+)=
(ak+bk)+(bk+2ak)∴b
k+1=b
k+2a
k,又a
k、b
k∈Z,所以2a
k是偶數(shù),
由歸納假設(shè)知b
k是奇數(shù),故b
k+1也是奇數(shù)
綜(i)(ii)可知數(shù)列{b
n}各項(xiàng)均為奇數(shù).
點(diǎn)評(píng):本題主要考查了二項(xiàng)式定理的應(yīng)用,以及利用數(shù)學(xué)歸納法證明有關(guān)問題,屬于中檔題.