15.已知指數(shù)函數(shù)y=2x的圖象與y軸交于點A,對數(shù)函數(shù)y=lnx的圖象與x軸交于點B,點P在直線AB上移動,點M(0,-3),則|MP|的最小值為2$\sqrt{2}$.

分析 由已知分別求出點A,B的坐標,可得直線BA的方程,利用點到直線的距離公式即可得出.

解答 解:指數(shù)函數(shù)y=2x的圖象與y軸交于點A(0,1),
對數(shù)函數(shù)y=lnx的圖象與x軸交于點B(1,0),
可得直線AB的方程:y=-x+1
∵點P在直線AB上移動,點M(0,-3),
則|MP|的最小值為點M到直線AB的距離d=$\frac{|0-3-1|}{\sqrt{2}}$=2$\sqrt{2}$.
故答案為:2$\sqrt{2}$.

點評 本題考查了直線的方程、點到直線的距離公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.袋中共有15個除顏色外完全相同的球,其中10個白球5個紅球,從袋中任取2個球,所取的2個球中恰有1個白球,1個紅球的概率為$\frac{10}{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點A(-4,0)到拋物線C:y2=8x的焦點F的距離|AF|等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}的各項均為正整數(shù),其前n項和為Sn,若an+1=$\left\{\begin{array}{l}\frac{a_n}{2},{a_n}是偶數(shù)\\ 3{a_n}+1,{a_n}是奇數(shù)\end{array}$且a1<6,S3=29,則S2015=4725.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(x,1).
(1)當$\overrightarrow a+2\overrightarrow b$與2$\overrightarrow a-\overrightarrow b$平行時,求x;
(2)當$\overrightarrow a+2\overrightarrow b$與2$\overrightarrow a-\overrightarrow b$垂直時,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=$\sqrt{{x}^{2}-2x+a}$的值域為[0,+∞),則實a的取值集合為{a∈R|a≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,一個大風(fēng)車的半徑是8米,每12分鐘旋轉(zhuǎn)一周,最低點離地面2米,若風(fēng)車翼片從最低點按逆時針方向開始旋轉(zhuǎn),則該翼片的端點P離地面的距離h(米)與時間t(分鐘)之間的函數(shù)關(guān)系是( 。
A.h=-8sin($\frac{π}{6}$t)+10B.h=-8cos($\frac{π}{3}$t)+10C.h=8cos($\frac{π}{6}$t)+10D.h=-8cos($\frac{π}{6}$t)+10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知不等式組$\left\{\begin{array}{l}x+y≤1\\ x-y≥-1\\ y≥0\end{array}\right.$所表示的平面區(qū)域為D,若直線y=kx-3與平面區(qū)域D有公共點,則k的取值范圍為(-∞,-3]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)求經(jīng)過兩條直線2x-y-3=0和4x-3y-5=0的交點,并且與直線2x+3y+5=0垂直的直線方程.
(2)已知在△ABC中,sin A+cos A=$\frac{1}{5}$.求tan A的值.

查看答案和解析>>

同步練習(xí)冊答案