17.若x>0,y>0,且$\frac{1}{x}+\frac{9}{y}=1$,則x+2y的最小值為19+6$\sqrt{2}$.

分析 利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵x>0,y>0,且$\frac{1}{x}+\frac{9}{y}=1$,
則x+2y=(x+2y)$(\frac{1}{x}+\frac{9}{y})$=19+$\frac{2y}{x}$+$\frac{9x}{y}$≥19+2$\sqrt{\frac{2y}{x}•\frac{9x}{y}}$=19+6$\sqrt{2}$,
當(dāng)且僅當(dāng)3x=$\sqrt{2}y$=3+9$\sqrt{2}$時取等號.
其最小值為19+6$\sqrt{2}$,
故答案為:19+6$\sqrt{2}$.

點評 本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax+lnx+$\frac{a+1}{x}$
(Ⅰ)若a≥0或a≤-1時,討論f(x)的單調(diào)性;
(Ⅱ)證明:f(x)至多一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≥1}\\{x≤2}\end{array}}\right.$,則目標(biāo)函數(shù)z=-2x+y的最大值為(  )
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=$\frac{\sqrt{2-ax}}{a-1}$在[0,$\frac{1}{2}$]上是減函數(shù),則a的取值范圍是a<0或1<a≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2a(cos2x+sinxcosx)+b
(1)當(dāng)a=1時,求函數(shù)f(x)的周期及單調(diào)遞增區(qū)間
(2)當(dāng)a>0,且x∈[0,$\frac{π}{2}$]時,f(x)的最大值為4,最小值為3,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列各式中,最小值為2的是( 。
A.$x+\frac{1}{x}$B.$\sqrt{{x^2}+2}+\frac{4}{{\sqrt{{x^2}+2}}}$C.$\frac{y}{x}+\frac{x}{y}$D.$x-2\sqrt{x}+3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列各組函數(shù)表示同一函數(shù)的是( 。
A.y=x與$y=\sqrt{x^2}$B.y=x+1與$y=\frac{{{x^2}-1}}{x-1}$
C.$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$與y=0D.y=x與$y=\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,已知$AB=\sqrt{3}$,$C=\frac{π}{3}$,則$\overrightarrow{CA}•\overrightarrow{CB}$的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知一個幾何體的三視圖如圖所示,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積為24+6π

查看答案和解析>>

同步練習(xí)冊答案