精英家教網 > 高中數學 > 題目詳情
對于四面體ABCD,下列命題正確的序號是 ______.
①相對棱AB與CD所在的直線異面;
②由頂點A作四面體的高,其垂足是△BCD的三條高線的交點;
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線異面;
④分別作三組相對棱中點的連線,所得的三條線段相交于一點;
⑤最長棱必有某個端點,由它引出的另兩條棱的長度之和大于最長棱.
①根據三棱錐的結構特征知正確.
②因為只有對棱相互垂直才行,所以不一定,不正確.
③若分別作△ABC和△ABD的邊AB上的高,若是正四面體時,則兩直線相交,不正確.
④因為相對棱中點兩兩連接構成平行四邊形,而對棱的中點的連接正是平行四邊形的對角線,所以三條線段相交于一點,故正確.
⑤根據兩邊之和大于第三邊,可知正確.
故答案為:①④⑤
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

15、對于四面體ABCD,下列命題正確的序號是
①④⑤

①相對棱AB與CD所在的直線異面;
②由頂點A作四面體的高,其垂足是△BCD的三條高線的交點;
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線異面;
④分別作三組相對棱中點的連線,所得的三條線段相交于一點;
⑤最長棱必有某個端點,由它引出的另兩條棱的長度之和大于最長棱.

查看答案和解析>>

科目:高中數學 來源: 題型:

15、對于四面體ABCD,下列命題正確的是
①④⑤
.(寫出所有正確命題的編號).
①相對棱AB與CD所在的直線是異面直線;
②由頂點A作四面體的高,其垂足是△BCD三條高線的交點;
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高的垂足重合;
④任何三個面的面積之和都大于第四個面的面積;
⑤分別作三組相對棱中點的連線,所得的三條線段相交于一點.

查看答案和解析>>

科目:高中數學 來源: 題型:

8、對于四面體ABCD,有如下命題
①棱AB與CD所在的直線異面;
②過點A作四面體ABCD的高,其垂足是△BCD的三條高線的交點;
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線異面;
④分別作三組相對棱的中點連線,所得的三條線段相交于一點,
其中正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

17、對于四面體ABCD,下列命題正確的是
①④
.(寫出所有正確命題的編號)
①相對棱AB與CD所在的直線異面
②由頂點A作四面體的高,其垂足必是△BCD的三條高線的交點
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線必異面
④分別作三組相對棱中點的連線,所得的三條線段相交于一點.

查看答案和解析>>

科目:高中數學 來源: 題型:

以下五個命題中,正確命題的個數是
3
3

①不共面的四點中,其中任意三點不共線;
②若a,b,c為空間中不重合的三條直線,若a⊥c,b⊥c,則a∥b;
③對于四面體ABCD,任何三個面的面積之和都大于第四個面的面積;
④對于四面體ABCD,相對棱AB 與CD 所在的直線是異面直線;
⑤各個面都是三角形的幾何體是三棱錐.

查看答案和解析>>

同步練習冊答案