已知直線l過(guò)拋物線y2=4x的焦點(diǎn)F,交拋物線于A、B兩點(diǎn),且點(diǎn)A、B到y(tǒng)軸的距離分別為m、n,則m+n+2的最小值為( 。
分析:利用拋物線的定義,求m+n+2的最小值,即求|AB|的最小值.①當(dāng)AB與x軸垂直時(shí),|AB|=2p;②當(dāng)AB與x軸不垂直時(shí),設(shè)直線AB的方程為y=k(x-1)(k≠0),與拋物線方程聯(lián)立消去y得到關(guān)于x的一元二次方程,利用弦長(zhǎng)公式|AB|=x1+x2+2p,即可得到其最小值.
解答:解:由拋物線y2=4x可得:焦點(diǎn)F(1,0).
∵直線l過(guò)拋物線y2=4x的焦點(diǎn)F,交拋物線于A、B兩點(diǎn),且點(diǎn)A、B到y(tǒng)軸的距離分別為m、n,
∴m=|AF|-1,n=|BF|-1,
∴m+n=|AF|+|BF|-2=|AB|-2,
∴m+n+2=|AB|.
求m+n+2的最小值,即求|AB|的最小值.
①當(dāng)AB與x軸垂直時(shí),|AB|=2p=4;
②當(dāng)AB與x軸不垂直時(shí),設(shè)直線AB的方程為y=k(x-1)(k≠0),代入拋物線方程,
消去y得到k2x2-(4+2k2)x+k2=0.
設(shè)A(x1,y1),B(x2,y2),則
x1+x2=
4+2k2
k2

∴|AB|=
4
k2
+2
+2p=6+
4
k2
>6.
綜上①②可知:|AB|的最小值是4.
∴m+n+2的最小值為4.
故選C.
點(diǎn)評(píng):本題考查拋物線的定義,考查拋物線的焦點(diǎn)弦長(zhǎng)問(wèn)題、分類討論思想方法等基礎(chǔ)知識(shí)與基本技能,考查了推理能力、計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,則這個(gè)橢圓上存在六個(gè)不同的點(diǎn)M,使得△F1MF2為直角三角形;
②已知直線l過(guò)拋物線y=2x2的焦點(diǎn),且與這條拋物線交于A,B兩點(diǎn),則|AB|的最小值為2;
③若過(guò)雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個(gè)焦點(diǎn)作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點(diǎn),則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個(gè)圓恰有2條公切線.
其中正確命題的序號(hào)是
 
.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1兩焦點(diǎn)F1,F(xiàn)2,則橢圓上存在六個(gè)不同點(diǎn)M,使得△F1MF2為直角三角形;
②已知直線l過(guò)拋物線y=2x2的焦點(diǎn),且與這條拋物線交于A,B兩點(diǎn),則|AB|的最小值為2;
③若過(guò)雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一個(gè)焦點(diǎn)作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點(diǎn),則|OM|=a;
④根據(jù)氣象記錄,知道荊門和襄陽(yáng)兩地一年中雨天所占的概率分別為20%和18%,兩地同時(shí)下雨的概率為12%,則荊門為雨天時(shí),襄陽(yáng)也為雨天的概率是60%.
其中正確命題的序號(hào)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,則這個(gè)橢圓上存在六個(gè)不同的點(diǎn)M,使得△F1MF2為直角三角形;
②已知直線l過(guò)拋物線y=2x2的焦點(diǎn),且與這條拋物線交于A,B兩點(diǎn),則|AB|的最小值為2;
③若過(guò)雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個(gè)焦點(diǎn)作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點(diǎn),則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個(gè)圓恰有2條公切線.
其中正確命題的序號(hào)是______.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省襄陽(yáng)四中、荊州中學(xué)、龍泉中學(xué)聯(lián)考高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

給出下列命題:
①已知橢圓=1兩焦點(diǎn)F1,F(xiàn)2,則橢圓上存在六個(gè)不同點(diǎn)M,使得△F1MF2為直角三角形;
②已知直線l過(guò)拋物線y=2x2的焦點(diǎn),且與這條拋物線交于A,B兩點(diǎn),則|AB|的最小值為2;
③若過(guò)雙曲線C:=1(a>0,b>0)的一個(gè)焦點(diǎn)作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點(diǎn),則|OM|=a;
④根據(jù)氣象記錄,知道荊門和襄陽(yáng)兩地一年中雨天所占的概率分別為20%和18%,兩地同時(shí)下雨的概率為12%,則荊門為雨天時(shí),襄陽(yáng)也為雨天的概率是60%.
其中正確命題的序號(hào)是( )
A.①③④
B.①②③
C.③④
D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年安徽省巢湖市高三(上)質(zhì)量檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出下列命題:
①已知橢圓的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,則這個(gè)橢圓上存在六個(gè)不同的點(diǎn)M,使得△F1MF2為直角三角形;
②已知直線l過(guò)拋物線y=2x2的焦點(diǎn),且與這條拋物線交于A,B兩點(diǎn),則|AB|的最小值為2;
③若過(guò)雙曲線C:的一個(gè)焦點(diǎn)作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點(diǎn),則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個(gè)圓恰有2條公切線.
其中正確命題的序號(hào)是    .(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案