年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| ||
a |
| ||
x |
6 |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年惠州一中模擬理) 已知,點(diǎn).
(Ⅰ)若,求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)的導(dǎo)函數(shù)滿足:當(dāng)時(shí),有恒成立,求函數(shù) 的解析表達(dá)式;
(Ⅲ)若,函數(shù)在和處取得極值,且,證明: 與不可能垂直。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)(且).
(1) 試就實(shí)數(shù)的不同取值,寫出該函數(shù)的單調(diào)遞增區(qū)間;
(2) 已知當(dāng)時(shí),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,求的值并寫出函數(shù)的解析式;
(3) (理)記(2)中的函數(shù)的圖像為曲線,試問是否存在經(jīng)過原點(diǎn)的直線,使得為曲線的對稱軸?若存在,求出的方程;若不存在,請說明理由.
(文) 記(2)中的函數(shù)的圖像為曲線,試問曲線是否為中心對稱圖形?若是,請求出對稱中心的坐標(biāo)并加以證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年上海市奉賢區(qū)高三第一學(xué)期調(diào)研測試數(shù)學(xué)文理合卷 題型:解答題
設(shè),, 其中是不等于零的常數(shù),
(1)、(理)寫出的定義域(2分);
(文)時(shí),直接寫出的值域(4分)
(2)、(文、理)求的單調(diào)遞增區(qū)間(理5分,文8分);
(3)、已知函數(shù),定義:,.其中,表示函數(shù)在上的最小值,
表示函數(shù)在上的最大值.例如:,,則 , ,
(理)當(dāng)時(shí),設(shè),不等式
恒成立,求的取值范圍(11分);
(文)當(dāng)時(shí),恒成立,求的取值范圍(8分);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com