精英家教網 > 高中數學 > 題目詳情

“拋階磚”是國外游樂場的典型游戲之一.參與者只須將手上的“金幣”(設“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個階磚(邊長為2.1的正方形)的范圍內(不與階磚相連的線重疊),便可獲大獎.不少人被高額獎金所吸引,紛紛參與此游戲但很少有人得到獎品,請用所學的概率知識解釋這是為什么.

 

 

0.0022.

【解析】在拋階磚游戲中,首先可以判定此試驗為幾何概型,我們?yōu)榱嗣枋雒恳淮坞S機試驗的結果只需要確定金幣圓心O的位置即可,一旦圓心位置確定,只要當圓心O到其最近正方形的各邊的距離大于其半徑時,便可獲大獎.由此不難想到一種臨界狀態(tài),就是當金幣與正方形的一邊相切時,此時圓心O到該邊的距離為1,顯然只有當圓心O到最近正方形的各邊的距離大于1時才能獲獎,所以若中獎,金幣圓心必位于小正方形區(qū)域A內.若中獎,金幣圓心必位于下圖的小正方形區(qū)域A內.圓心隨機地落在“階磚”的任何位置,所以這是一個幾何概型.其概率為≈0.0022.

 

練習冊系列答案
相關習題

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥選修4-2第2課時練習卷(解析版) 題型:解答題

矩陣M=有特征向量為e1=,e2=,

(1)求e1和e2對應的特征值;

(2)對向量α=,記作α=e1+3e2,利用這一表達式間接計算M4α,M10α.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥選修4-1第2課時練習卷(解析版) 題型:解答題

如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使CD=AC,連結AD交圓O于點E,連結BE與AC交于點F.

(1)判斷BE是否平分∠ABC,并說明理由;

(2)若AE=6,BE=8,求EF的長.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥選修4-1第1課時練習卷(解析版) 題型:解答題

如圖,在梯形ABCD中,AD∥BC,AC⊥BD,垂足為E,∠ABC=45°,過E作AD的垂線交AD于F,交BC于G,過E作AD的平行線交AB于H.求證:FG2=AF·DF+BG·CG+AH·BH.

 

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥選修4-1第1課時練習卷(解析版) 題型:解答題

如圖,四邊形ABCD中,DF⊥AB,垂足為F,DF=3,AF=2FB=2,延長FB到E,使BE=FB.連結BD、EC,若BD∥EC,求△BCD和四邊形ABCD的面積.

 

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第十章第6課時練習卷(解析版) 題型:填空題

在一個盒子中有分別標有數字1,2,3,4,5的5張卡片,現(xiàn)從中一次取出2張卡片,則取到的卡片上的數字之積為偶數的概率是________.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第十章第6課時練習卷(解析版) 題型:解答題

如圖,∠AOB=60°,OA=2,OB=5,在線段OB上任取一點C,試求:

(1)△AOC為鈍角三角形的概率;

(2)△AOC為銳角三角形的概率.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第十章第5課時練習卷(解析版) 題型:解答題

已知直線l1:x-2y-1=0,直線l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6}.

(1) 求直線l1∩l2=?的概率;

(2) 求直線l1與l2的交點位于第一象限的概率.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第十章第3課時練習卷(解析版) 題型:填空題

某射擊選手連續(xù)射擊5槍命中的環(huán)數分別為:9.7,9.9,10.1,10.2,10.1,則這組數據的方差為________.

 

查看答案和解析>>

同步練習冊答案