精英家教網 > 高中數學 > 題目詳情

給定橢圓.稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

(1) ; (2) 垂直.

解析試題分析:(1)由“橢圓C的一個焦點為,其短軸上的一個端點到F的距離為”知:從而可得橢圓的標準方程和“準圓”的方程;
(2)分兩種情況討論:①當中有一條直線斜率不存在;②直線斜率都存在.
對于①可直接求出直線的方程并判斷其是不互相垂直;
對于②設經過準圓上點與橢圓只有一個公共點的直線為
與橢圓方程聯立組成方程組消去得到關于的方程:
化簡整理得:
而直線的斜率正是方程的兩個根,從而
(1)
橢圓方程為
準圓方程為
(2)①當中有一條無斜率時,不妨設無斜率,
因為與橢圓只有一個共公點,則其方程為
方程為時,此時與準圓交于點
此時經過點(或)且與橢圓只有一個公共瞇的直線是(或
(或),顯然直線垂直;
同理可證方程為時,直線也垂直.
②當都有斜率時,設點其中
設經過點與橢圓只有一個公共點的直線為
則由消去,得

化簡整理得:
因為,所以有
的斜率分別為,因為與橢圓只有一個公共點
所以滿足上述方程

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知橢圓的左右頂點分別為,離心率
(1)求橢圓的方程;
(2)若點為曲線:上任一點(點不同于),直線與直線交于點,為線段的中點,試判斷直線與曲線的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(2013•湖北)如圖,已知橢圓C1與C2的中心在坐標原點O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點且不與x軸重合的直線l與C1,C2的四個交點按縱坐標從大到小依次為A,B,C,D,記,△BDM和△ABN的面積分別為S1和S2
(1)當直線l與y軸重合時,若S1=λS2,求λ的值;
(2)當λ變化時,是否存在與坐標軸不重合的直線l,使得S1=λS2?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在與橢圓交于兩點的直線,使得成立?若存在,求出實數的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

給定橢圓.稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,已知動點到點的距離為,到軸的距離為,且
(1)求點的軌跡的方程;
(2) 若直線斜率為1且過點,其與軌跡交于點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知中心在原點的橢圓C: 的一個焦點為為橢圓C上一點,△MOF2的面積為.
(1)求橢圓C的方程;
(2)是否存在平行于OM的直線l,使得l與橢圓C相交于A、B兩點,且以線段AB為直徑的圓恰好過原點?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設橢圓的中心和拋物線的頂點均為原點,、的焦點均在軸上,過的焦點F作直線,與交于A、B兩點,在、上各取兩個點,將其坐標記錄于下表中:


(1)求,的標準方程;
(2)若交于C、D兩點,的左焦點,求的最小值;
(3)點上的兩點,且,求證:為定值;反之,當為此定值時,是否成立?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知點在拋物線上,直線,且)與拋物線,相交于兩點,直線分別交直線于點、.
(1)求的值;
(2)若,求直線的方程;
(3)試判斷以線段為直徑的圓是否恒過兩個定點?若是,求這兩個定點的坐標;若不是,說明理由.

查看答案和解析>>

同步練習冊答案