精英家教網 > 高中數學 > 題目詳情
函數f(x)=|sinx+cosx|的最小正周期是( )
A.
B.
C.π
D.2π
【答案】分析:根據周期函數的定義對選項進行逐一驗證即可.
解答:解:∵f(x)=|sinx+cosx|=|sin(x+)|
f(x+)=|sin(x+)|=|cosx|≠|sin(x+)|=f(x)  故排除A.
f(x+)=|sin(x++)|=|cos(x+)|≠|sin(x+)|=f(x)  故排除B.
f(x+π)=|sin(x++π+)|=|sin(x+)|=f(x).
故選C
點評:本題主要考查周期函數的定義,即對于函數f(x)定義域中任意x滿足f(x+T)=f(x),則f(x)為周期函數,T為函數f(x)的一個周期.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

9、已知函數f(x)=sinx+ex+x2010,令f1(x)=f′(x),f2(x)=f′1(x),f3(x)=f′2(x),…,fn+1(x)=f′n(x),則f2011(x)=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

對任意實數a,b,函數F(a,b)=
1
2
(a+b-|a-b|)
.如果函數f(x)=sinx,g(x)=cosx,那么對于函數G(x)=F(f(x),g(x)).對于下列五種說法:
(1)函數G(x)的值域是[-
2
,2]
;
(2)當且僅當2kπ+
π
2
<x<2(k+1)π(k∈Z)
時,G(x)<0;
(3)當且僅當x=2kπ+
π
2
(k∈Z)
時,該函數取最大值1;
(4)函數G(x)圖象在[
π
4
,
4
]
上相鄰兩個最高點的距離是相鄰兩個最低點的距離的4倍;
(5)對任意實數x有G(
4
-x)=G(
4
+x)
恒成立.
其中正確結論的序號是
(2)(4)(5)
(2)(4)(5)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•安徽模擬)已知函數f(x)=sinx-
x2
的導數為f'(x),且f'(x)的最大值為b,若g(x)=2lnx-2bx2-kx在[1,+∞)上單調遞減,則實數k的取值范圍是
[0,+∞)
[0,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=sinx+lnx,則f′(x)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

把函數f(x)=sinx(x∈[0,2π])的圖象向左平移
π
3
后,得到g(x)的圖象,則f(x)與g(x)的圖象所圍成的圖形的面積為(  )
A、4
B、2
2
C、2
3
D、2

查看答案和解析>>

同步練習冊答案