【題目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)當x∈[0, ]時,求| + |的取值范圍;
(2)若g(x)=( + ,求當k為何值時,g(x)的最小值為﹣

【答案】
(1)解: =(sinx﹣2cosx,sinx),

| |2=(sinx﹣2cosx,sinx)2

=2sin2x﹣4sinxcosx+4cos2x

=2cos2x﹣4sinxcosx+2

=cos2x﹣2sin2x+3

= cos(2x+φ)+3,其中,tanφ=2,

又∵x∈[0, ],

上單調(diào)遞減,

∴| cos(2x+φ)|2∈[1,4],

∴| + |∈[1,2].


(2)解: =(2sinx,cosx+k),

g(x)=(

=﹣4sinxcosx+(cosx+k)(sinx﹣k)

=﹣3sinxcosx+k(sinx﹣cosx)﹣k2

令t=sinx﹣cosx= sin(x﹣ ),

則t∈[﹣ , ],且t2=sin2x+cos2x﹣2sinxcosx=1﹣2sinxcosx,

所以

所以g(x)可化為 ,

對稱軸

①當 ,即 時, ,

,得 ,

所以

因為

所以此時無解.

②當 ,即 時,

由﹣ =﹣ ,得k=0∈[﹣3 ,3 ].

③當﹣ ,即k<﹣3 時,

g(x)min=h( )=﹣k2+ k+ ,

由﹣k2+ k+ =﹣ ,得k2 k﹣3=0,

所以k=

因為k ,所以此時無解.

綜上所述,當k=0時,g(x)的最小值為﹣


【解析】(1)由已知利用平面向量的坐標運算可得 =(sinx﹣2cosx,sinx),利用三角函數(shù)恒等變換的應用可得| |2= cos(2x+φ)+3,其中,tanφ=2,又x∈[0, ],可求 ,利用余弦函數(shù)的單調(diào)性即可得解| + |的取值范圍;(2)利用平面向量數(shù)量積的運算可得g(x)=﹣3sinxcosx+k(sinx﹣cosx)﹣k2 , 令t=sinx﹣cosx= sin(x﹣ ),則g(x)可化為 ,對稱軸 .利用二次函數(shù)的圖象和性質(zhì)分類討論即可得解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2016年10月,繼微信支付對提現(xiàn)轉(zhuǎn)賬收費后,支付寶也開始對提現(xiàn)轉(zhuǎn)賬收費,隨著這兩大目前用戶使用粘度最高的第三方支付開始收費,業(yè)內(nèi)人士分析,部分對價格敏感的用戶或?qū)⒒亓髦羵鹘y(tǒng)銀行體系,某調(diào)查機構對此進行調(diào)查,并從參與調(diào)查的數(shù)萬名支付寶用戶中隨機選取200人,把這200人分為3類:認為使用支付寶方便,仍使用支付寶提現(xiàn)轉(zhuǎn)賬的用戶稱為“類用戶”;根據(jù)提現(xiàn)轉(zhuǎn)賬的多少確定是否使用支付寶的用戶稱為“類用戶”;提前將支付寶賬戶內(nèi)的資金全部提現(xiàn),以后轉(zhuǎn)賬全部通過銀行的用戶稱為“類用戶”,各類用戶的人數(shù)如圖所示:

同時把這200人按年齡分為青年人組與中老年人組,制成如圖所示的列聯(lián)表:

類用戶

類用戶

合計

青年

20

中老年

40

合計

200

(Ⅰ)完成列聯(lián)表并判斷是否有99.5%的把握認為“類用戶與年齡有關”;

(Ⅱ)從這200人中按類用戶、類用戶、類用戶進行分層抽樣,從中抽取10人,再從這10人中隨機抽取4人,求在這4人中類用戶、類用戶、類用戶均存在的概率;

(Ⅲ)把頻率作為概率,從支付寶所有用戶(人數(shù)很多)中隨機抽取3人,用表示所選3人中類用戶的人數(shù),求的分布列與期望.

附:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】生產(chǎn)甲乙兩種元件,其質(zhì)量按檢測指標劃分為:指標大于或者等于82為正品,小于82為次品,現(xiàn)隨機抽取這兩種元件各100件進行檢測,檢測結果統(tǒng)計如下:

測試指標

元件甲

8

12

40

32

8

元件乙

7

18

40

29

6

(1)試分別估計元件甲、乙為正品的概率;

(2)生產(chǎn)一件元件甲,若是正品可盈利40元,若是次品則虧損5元,生產(chǎn)一件元件乙,若是正品可盈利50元,若是次品則虧損10元.在(1)的前提下:

(i)記為生產(chǎn)1件甲和1件乙所得的總利潤,求隨機變量的分布列和數(shù)學期望;

(ii)求生產(chǎn)5件元件乙所獲得的利潤不少于140元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)= x3 ax2+(a﹣1)x+1在區(qū)間(2,3)內(nèi)為減函數(shù),在區(qū)間(5,+∞)為增函數(shù),則實數(shù)a的取值范圍是(
A.[3,4]
B.[5,7]
C.[4,6]
D.[7,8]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知右焦點為的橢圓關于直線對稱的圖形過坐標原點.

(1)求橢圓的方程;

(2)過點且不垂直于軸的直線與橢圓交于兩點,點關于軸的對稱點為.證明:直線軸的交點為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從2 012名學生中選取50名學生參加數(shù)學競賽,若采用下面的方法選。合扔煤唵坞S機抽樣從2 012人中剔除12人,剩下的2 000人再按系統(tǒng)抽樣的方法抽取50人,則在2 012人中,每人入選的概率(
A.不全相等
B.均不相等
C.都相等,且為
D.都相等,且為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:

零件的個數(shù)x(個)

2

3

4

5

加工的時間y(小時)

2.5

3

4

4.5


(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關于x的線性回歸方程 = x+ ,并在坐標系中畫出回歸直線;
(3)試預測加工10個零件需要多少時間? 參考公式:回歸直線 =bx+a,其中b= = ,a= ﹣b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:方程x2﹣4x+m=0有實根,命題q:﹣1≤m≤5.若p∧q為假命題,p∨q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】二次函數(shù)f(x)=ax2+2a是區(qū)間[﹣a,a2]上的偶函數(shù),又g(x)=f(x﹣1),則g(0),g( ),g(3)的大小關系是(
A.g( )<g(0)<g(3)
B.g(0)<g( )<g(3)??
C.g( )<g(3)<g(0)
D.g(3)<g( )<g(0)

查看答案和解析>>

同步練習冊答案