已知函數(shù)f(x)=x3+ax2其中a∈R(R為實數(shù)集).討論函數(shù)f(x)的單調(diào)性.
分析:求出f(x)的導(dǎo)函數(shù),分解因式后,根據(jù)a>0,a=0和a<0,分別討論導(dǎo)函數(shù)的正負(fù)即可得到函數(shù)的單調(diào)區(qū)間.
解答:解:∵f(x)=x3+ax2,a∈R
∴f′(x)=3x2+2ax=x(3x+2a),
①當(dāng)a>0時,由f′(x)>0,得x>0,或x<-
2a
3
,
由f′(x)<0,得-
2a
3
<x<0,
∴f(x)=x3+ax2的增區(qū)間為(-∞,-
2a
3
),(0,+∞),減區(qū)間為(-
2a
3
,0
).
②當(dāng)a=0時,由f′(x)=3x2≥0恒成立,∴函數(shù)f(x)在(-∞,+∞)單調(diào)遞增.
③當(dāng)a>0時,由f′(x)>0,得x>-
2a
3
,或x<0,
由f′(x)<0,得0<x<-
2a
3
,
∴f(x)=x3+ax2的增區(qū)間為(-∞,0),(-
2a
3
,+∞),減區(qū)間為(0,
2a
3
).
點評:此題考查學(xué)生會根據(jù)導(dǎo)函數(shù)的正負(fù)判斷得到函數(shù)的單調(diào)區(qū)間,是一道基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答,注意分類討論思想的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案