某物體運(yùn)動(dòng)曲線s=2t3,則物體在t=2秒時(shí)的瞬時(shí)速度是______.
∵s=2t3,
∴s'=s'(t)=6t2,
∴物體在t=2秒時(shí)的瞬時(shí)速度為s'(2)=6×22=6×4=24.
故答案為:24
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)的導(dǎo)函數(shù)為,若時(shí),;;時(shí),,則(     )
A.25 B.17 C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求過(guò)曲線上一點(diǎn)的切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

運(yùn)用導(dǎo)數(shù)的定義求函數(shù)y=x3+3x在x=-2處的導(dǎo)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知某物體的運(yùn)動(dòng)方程是s(t)=-t2+20t+5(其中s的單位是米,t的單位是秒),則物體在t=2秒時(shí)的速度為_(kāi)_____米/秒.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=-
1
3
x3+x2+(m2-1)
x(x∈R),其中m>0.
(1)當(dāng)m=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(3)已知函數(shù)f(x)有三個(gè)互不相同的零點(diǎn)0,x1,x2,且x1<x2,若對(duì)任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,
(1)若的單調(diào)減區(qū)間是,求實(shí)數(shù)a的值;
(2)若對(duì)于定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)有兩個(gè)極值點(diǎn), 且.若恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的圖像在點(diǎn)M處的切線方程是,=         。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,則的值為_(kāi)___        . 

查看答案和解析>>

同步練習(xí)冊(cè)答案