【題目】已知方程只有一個(gè)實(shí)數(shù)根,則的取值范圍是( )
A.或B.或C.D.或
【答案】A
【解析】
令,則原方程轉(zhuǎn)化成,令,顯然,問題轉(zhuǎn)化成函數(shù)在上只有一個(gè)零點(diǎn)1,求導(dǎo)后再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,由此可得答案.
解:令,則原方程轉(zhuǎn)化成,即,
令,顯然,
問題轉(zhuǎn)化成函數(shù)在上只有一個(gè)零點(diǎn)1,
,
若,則在單調(diào)遞增,,此時(shí)符合題意;
若,則,在單調(diào)遞增,,此時(shí)符合題意;
若,記,
則函數(shù)開口向下,對稱軸,過,,
當(dāng)即即時(shí),,在單調(diào)遞減,,此時(shí)符合題意;
當(dāng)即即時(shí),設(shè)有兩個(gè)不等實(shí)根,,
又,對稱軸,所以,
則在單調(diào)遞減,單調(diào)遞增,單調(diào)遞增,
由于,所以,
取,,
記 令,
則,所以,
結(jié)合零點(diǎn)存在性定理可知,函數(shù)在存在一個(gè)零點(diǎn),不符合題意;
綜上,符合題意的的取值范圍是或,
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代名著《張丘建算經(jīng)》中記載:“今有方錐,下廣二丈,高三丈.欲斬末為方亭,令上方六尺.問:斬高幾何?”大致意思是:有一個(gè)正四棱錐下底邊長為二丈,高三丈,現(xiàn)從上面截去一段,使之成為正四棱臺,且正四棱臺的上底邊長為六尺,則截去的正四棱錐的高是多少.如果我們把求截去的正四棱錐的高改為求剩下的正四棱臺的體積,則該正四棱臺的體積是(注:1丈尺)( )
A.1946立方尺B.3892立方尺C.7784立方尺D.11676立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,直線l與曲線C交于不同的兩點(diǎn)A,B.
(1)求曲線C的參數(shù)方程;
(2)若點(diǎn)P為直線與x軸的交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)(為自然對數(shù)的底數(shù))時(shí),求的最小值;
(2)討論函數(shù)零點(diǎn)的個(gè)數(shù);
(3)若對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗(yàn),某海鮮商家的海產(chǎn)品每只質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布.
(1)隨機(jī)購買10只該商家的海產(chǎn)品,求至少買到一只質(zhì)量小于克該海產(chǎn)品的概率.
(2)2020年該商家考慮增加先進(jìn)養(yǎng)殖技術(shù)投入,該商家欲預(yù)測先進(jìn)養(yǎng)殖技術(shù)投入為49千元時(shí)的年收益增量.現(xiàn)用以往的先進(jìn)養(yǎng)殖技術(shù)投入(千元)與年收益增量(千元)()的數(shù)據(jù)繪制散點(diǎn)圖,由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近,且,,,,,, ,其中, =.根據(jù)所給的統(tǒng)計(jì)量,求關(guān)于的回歸方程,并預(yù)測先進(jìn)養(yǎng)殖技術(shù)投入為49千元時(shí)的年收益增量.
附:若隨機(jī)變量,則,;
對于一組數(shù)據(jù),,,,其回歸線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于⊙O:x2+y2=1來說,P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若P與O重合,SP=r;若P不與O重合,射線OP與⊙O的交點(diǎn)為A,SP=AP的長度(如圖).
(1)直線2x+2y+1=0在圓內(nèi)部分的點(diǎn)到⊙O的最長距離為_____;
(2)若線段MN上存在點(diǎn)T,使得:
①點(diǎn)T在⊙O內(nèi);
②點(diǎn)P∈線段MN,都有ST≥SP成立.則線段MN的最大長度為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A.命題“若,則”的逆否命題為“若,則”
B.命題“,”是假命題
C.若命題、均為假命題,則命題為真命題
D.若是定義在R上的函數(shù),則“”是“是奇函數(shù)”的必要不允分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考最大的特點(diǎn)就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這科中自由選擇三門科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān),覺得從某學(xué)校高一年級的名學(xué)生中隨機(jī)抽取男生,女生各人進(jìn)行模擬選科.經(jīng)統(tǒng)計(jì),選擇全理的人數(shù)比不選全理的人數(shù)多人.
(1)請完成下面的列聯(lián)表;
(2)估計(jì)有多大把握認(rèn)為選擇全理與性別有關(guān),并說明理由;
(3)現(xiàn)從這名學(xué)生中已經(jīng)選取了男生名,女生名進(jìn)行座談,從中抽取名代表作問卷調(diào)查,求至少抽到一名女生的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年上半年我國多個(gè)省市暴發(fā)了“非洲豬瘟”疫情,生豬大量病死,存欄量急劇下降,一時(shí)間豬肉價(jià)格暴漲,其他肉類價(jià)格也跟著大幅上揚(yáng),嚴(yán)重影響了居民的生活.為了解決這個(gè)問題,我國政府一方面鼓勵(lì)有條件的企業(yè)和散戶防控疫情,擴(kuò)大生產(chǎn);另一方面積極向多個(gè)國家開放豬肉進(jìn)口,擴(kuò)大肉源,確保市場供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場形勢,決定響應(yīng)政府號召,擴(kuò)大生產(chǎn)決策層調(diào)閱了該企業(yè)過去生產(chǎn)相關(guān)數(shù)據(jù),就“一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系”進(jìn)行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表:
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究員甲根據(jù)以上數(shù)據(jù)認(rèn)為與具有線性回歸關(guān)系,請幫他求出關(guān)于的線.性回歸方程(保留小數(shù)點(diǎn)后兩位有效數(shù)字)
(2)研究員乙根據(jù)以上數(shù)據(jù)得出與的回歸模型:.為了評價(jià)兩種模型的擬合效果,請完成以下任務(wù):
①完成下表(計(jì)算結(jié)果精確到0.01元)(備注:稱為相應(yīng)于點(diǎn)的殘差);
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計(jì)值 | |||||
殘差 | ||||||
模型乙 | 估計(jì)值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 |
②分別計(jì)算模型甲與模型乙的殘差平方和及,并通過比較的大小,判斷哪個(gè)模型擬合效果更好.
(3)根據(jù)市場調(diào)查,生豬存欄數(shù)量達(dá)到1萬頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達(dá)到1.2萬頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計(jì)算一天中一頭豬的平均成本,問該生豬存欄數(shù)量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)
參考公式:.
參考數(shù)據(jù):.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com