函數(shù)f(x)=3+sinx,x∈[0,1)的反函數(shù)的定義域是

A.[0,1)          B.[1,3+sin1)       C.[0,4)           D.[0,+

 

【答案】

B

【解析】

試題分析:根據(jù)題意,由于互為反函數(shù)的定義域和值域恰好相反,那么所求的反函數(shù)的定義域就是原函數(shù)的值域,即函數(shù)f(x)=3+sinx,x∈[0,1),f(x) x∈[3,3+sin1],故答案為B.

考點(diǎn):反函數(shù)

點(diǎn)評(píng):本題主要考查反函數(shù)的性質(zhì),考查了互為反函數(shù)的兩個(gè)函數(shù)的定義域和值域正好相反.屬于基礎(chǔ)題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:山東省濟(jì)寧市汶上一中2011-2012學(xué)年高二3月月考數(shù)學(xué)理科試題 題型:044

已知函數(shù)f(x)滿足f(x)+(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).

(1)當(dāng)x≥0時(shí),曲線y=f(x)在點(diǎn)M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;

(2)若g(x)<t2+λt+1在x∈[-1,1]時(shí)恒成立,求t的取值范圍;

(3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點(diǎn)個(gè)數(shù),并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省德州市2012屆高三第一次模擬考試數(shù)學(xué)文科試題 題型:044

已知函數(shù)f(x)=sinxcosx-cos2x+(x∈R)

(Ⅰ)求函數(shù)f(x)的最小正周期及在區(qū)間上的值域;

(Ⅱ)在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,又面積S△ABC=3,求邊長(zhǎng)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:福建省師大附中2012屆高三高考模擬數(shù)學(xué)文科試題 題型:044

已知函數(shù)f(x)=x3+ax2+bx(x≠0)只有一個(gè)零點(diǎn)x=3.

(Ⅰ)求函數(shù)f(x)的解析式;

(Ⅱ)若函數(shù)在區(qū)間(0,2)上有極值點(diǎn),求m取值范圍;

(Ⅲ)是否存在兩個(gè)不等正數(shù)s,t(s<t),當(dāng)x∈[s,t]時(shí),函數(shù)f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有這樣的正數(shù)s,t;若不存在,請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f (x)=x2ax+3,當(dāng)x∈[-2, 2]時(shí)f (x)≥a恒成立,求a的取值范圍據(jù)統(tǒng)計(jì),某市的工業(yè)垃圾若不回收處理,每噸約占地4平方米,2002年,環(huán)保部門共回收處理了100噸工業(yè)垃圾,且以后垃圾回收處理量每年遞增20%(工業(yè)垃圾經(jīng)回收處理后,不再占用土地面積).

   (Ⅰ)2007年能回收處理多少噸工業(yè)垃圾?(精確到1噸)w.w.w.k.s.5.u.c.o.m               

   (Ⅱ)從2002年到2015年底,可節(jié)約土地多少平方米(精確到1m2

(參考數(shù)據(jù):1.24≈2.1  1.55=2.5   1.26=3.0   1.213≈10.7   1.214≈12.8)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面向量=(cosx,sinx),=(cosx+2,s inx),=(sinα,cosα),x∈R.

(1)若,求cos(2x+2α)的值;

(2)若x∈,證明不可能平行;

(3)若α=0,求函數(shù)f(x)=·(-2)的最大值,并求出相應(yīng)的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案