【題目】設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=2x2﹣x,則f(1)=(
A.﹣3
B.﹣1
C.1
D.3

【答案】A
【解析】解:∵當(dāng)x≤0時(shí),f(x)=2x2﹣x,
∴f(﹣1)=2(﹣1)2﹣(﹣1)=3,
又∵f(x)是定義在R上的奇函數(shù)
∴f(1)=﹣f(﹣1)=﹣3
故選A
要計(jì)算f(1)的值,根據(jù)f(x)是定義在R上的奇函數(shù),我們可以先計(jì)算f(﹣1)的值,再利用奇函數(shù)的性質(zhì)進(jìn)行求解,當(dāng)x≤0時(shí),f(x)=2x2﹣x,代入即可得到答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=loga|x﹣1|在(0,1)上遞減,那么f(x)在(1,+∞)上(
A.遞增且無(wú)最大值
B.遞減且無(wú)最小值
C.遞增且有最大值
D.遞減且有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有以下幾個(gè)命題:
①“若xy=1,則x,y互為倒數(shù)”的逆命題
②“面積相等的三角形全等”的否命題
③“若m≤1,則x2﹣2x+m=0有實(shí)數(shù)解”的逆否命題
其中真命題為(
A.①②③
B.①③
C.②③
D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若集合M={﹣1,0,1},N={x|x=coskπ,k∈Z},則MN=(
A.
B.0
C.{0}
D.{﹣1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)是增函數(shù)而且又是奇函數(shù)的是(
A.y=2x
B.y=2|x|
C.y=2x﹣2x
D.y=2x+2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x2﹣4x+5在區(qū)間[0,m]上的最大值為5,最小值為1,則m的取值范圍是(
A.[2,+∞)
B.[2,4]
C.(﹣∞,2]
D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某家企業(yè)的生產(chǎn)成本z(單位:萬(wàn)元)和生產(chǎn)收入ω(單位:萬(wàn)元)都是產(chǎn)量x(單位:t)的函數(shù),其解析式分別為:z=x3﹣18x2+75x﹣80,ω=15x
(1)試寫出該企業(yè)獲得的生產(chǎn)利潤(rùn)y(單位:萬(wàn)元)與產(chǎn)量x(單位:t)之間的函數(shù)解析式;
(2)當(dāng)產(chǎn)量為多少時(shí),該企業(yè)能獲得最大的利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店商品每件成本10元,若售價(jià)為25元,則每天能賣出288件,經(jīng)調(diào)查,如果降低價(jià)格,銷售量可以增加,且每天多賣出的商品件數(shù)t與商品單價(jià)的降低值x(單位:元,0≤x≤15)的關(guān)系是t=6x2
(1)將每天的商品銷售利潤(rùn)y表示成x的函數(shù);
(2)如何定價(jià)才能使每天的商品銷售利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a , b , c , d為實(shí)數(shù),且c>d , 則“a>b”是“ac>bd”的(  )
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案