已知橢圓的左,右兩個頂點分別為A、B.曲線C是以A、B兩點為頂點,離心率為的雙曲線.設(shè)點P在第一象限且在曲線C上,直線AP與橢圓相交于另一點T.
(1)求曲線C的方程;
(2)設(shè)P、T兩點的橫坐標分別為x1、x2,證明:x1·x2=1;
(3)設(shè)△TAB與△POB(其中O為坐標原點)的面積分別為S1與S2,且·≤15,求-的取值范圍.
科目:高中數(shù)學 來源:2013-2014學年上海市普陀區(qū)高三上學期12月月考文科數(shù)學試卷(解析版) 題型:填空題
已知橢圓的左、右兩個焦點分別為、,若經(jīng)過的直線與橢圓相交于、兩點,則△的周長等于 .
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年廣東省深圳市高三12月月考文科數(shù)學試卷(解析版) 題型:解答題
(14分)已知橢圓的左、右兩個頂點分別為、.曲線是以、兩點為頂點,離心率為的雙曲線.設(shè)點在第一象限且在曲線上,直線與橢圓相交于另一點.
(1)求曲線的方程;
(2)設(shè)點、的橫坐標分別為、,證明:;
(3)設(shè)與(其中為坐標原點)的面積分別為與,且,求 的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省廣州市高三綜合測試(一)理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
已知橢圓的左,右兩個頂點分別為、.曲線是以、兩點為頂點,離心率為的雙曲線.設(shè)點在第一象限且在曲線上,直線與橢圓相交于另一點.
(1)求曲線的方程;
(2)設(shè)、兩點的橫坐標分別為、,證明:;
(3)設(shè)與(其中為坐標原點)的面積分別為與,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年江西省高三第一次統(tǒng)考數(shù)學試卷 題型:解答題
((本小題滿分12分)
已知橢圓的左、右兩個焦點為,離心率為,又拋物線與橢圓有公共焦點.
(1)求橢圓和拋物線的方程;
(2)設(shè)直線經(jīng)過橢圓的左焦點且與拋物線交于不同兩點P、Q且滿足,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年北京市高三起點考試理科數(shù)學卷 題型:解答題
(本小題滿分12分)
已知橢圓的左、右兩個焦點分別為F1、F2,離心率為,且拋物線與橢圓C1有公共焦點F2(1,0)。
(1)求橢圓和拋物線的方程;
(2)設(shè)A、B為橢圓上的兩個動點,,過原點O作直線AB的垂線OD,垂足為D,求點D為軌跡方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com