【題目】已知數(shù)列{an}滿足a1=1,a2=2,an+2=(1+cos2 )an+sin2 ,則該數(shù)列的前10項和為 .
【答案】77
【解析】解:因為a1=1,a2=2,所以a3=(1+cos2 )a1+sin2 =a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.
一般地,當(dāng)n=2k﹣1(k∈N*)時,a2k+1=[1+cos2 ]a2k﹣1+sin2 =a2k﹣1+1,即a2k+1﹣a2k﹣1=1.
所以數(shù)列{a2k﹣1}是首項為1、公差為1的等差數(shù)列,因此a2k﹣1=k.
當(dāng)n=2k(k∈N*)時,a2k+2=(1+cos2 )a2k+sin2 =2a2k .
所以數(shù)列{a2k}是首項為2、公比為2的等比數(shù)列,因此a2k=2k .
該數(shù)列的前10項的和為1+2+2+4+3+8+4+16+5+32=77
所以答案是:77
【考點精析】關(guān)于本題考查的數(shù)列的前n項和,需要了解數(shù)列{an}的前n項和sn與通項an的關(guān)系才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是公比不為1的等比數(shù)列,a1=1,且a1 , a3 , a2成等差數(shù)列.
(1)求數(shù)列{an}的通項;
(2)若數(shù)列{an}的前n項和為Sn , 試求Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。D、E、F為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐。當(dāng)△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線上一點, 到直線的距離為, 到的準線的距離為,且的最小值為.
(Ⅰ)求拋物線的方程;
(Ⅱ)直線交于點,直線交于點,線段的中點分別為,若,直線的斜率為,求證:直線恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點為,右頂點為,離心率為.已知是拋物線的焦點, 到拋物線的準線的距離為.
(I)求橢圓的方程和拋物線的方程;
(II)設(shè)上兩點, 關(guān)于軸對稱,直線與橢圓相交于點(異于點),直線與軸相交于點.若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標為(0,1).當(dāng)m變化時,解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的離心率為,圓心在軸的正半軸上的圓與雙曲線的漸近線相切,且圓的半徑為2,則以圓的圓心為焦點的拋物線的標準方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 等比數(shù)列{bn}的各項均為正數(shù),滿足:a1=b1=1,a5=b3 , 且S3=9.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求 + +…+ 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com