4.設(shè)實(shí)數(shù)x、y滿足x2+y2-4x+3=0,則x2+y2-2y的最大值為5+2$\sqrt{5}$.

分析 根據(jù)x2+(y-1)2表示圓上的點(diǎn)(x,y)到(0,1)的距離的平方,求出它的最大值,可得x2+y2-2y的最大值.

解答 解:方程x2+y2-4x+3=0,即(x-2)2+y2=1,表示以(2,0)為圓心、半徑等于1的圓.
x2+y2-2y=x2+(y-1)2-1
根據(jù)x2+(y-1)2表示圓上的點(diǎn)(x,y)到(0,1)的距離的平方,故它的最大值是($\sqrt{5}$+1)2=6+2$\sqrt{5}$,
∴x2+y2-2y的最大值為5+2$\sqrt{5}$
故答案為:5+2$\sqrt{5}$.

點(diǎn)評(píng) 本題主要考查圓的標(biāo)準(zhǔn)方程,兩點(diǎn)間的距離公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知p:-2≤x≤10,q:x2-2x+1-a2≥0(a>0),若非p是q的充分不必要條件,則a的取值范圍是( 。
A.(0,3]B.[3,+∞)C.[9,+∞)D.[3,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知點(diǎn)$\overrightarrow{a}$=(2,m),$\overrightarrow$=(1,1),若$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$-$\overrightarrow$|,則實(shí)數(shù)m等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在三棱錐P-ABC中,PA⊥平面ABC,PA=2,AB=2,AC=1,∠BAC=60°,則該三棱錐的外接球的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,函數(shù)f(x)=asinax+cosax(a>0)的最小正周期為$\frac{2π}{a}$,在一個(gè)最小正周期長(zhǎng)的區(qū)間上的圖象與函數(shù)$g(x)=\sqrt{{a^2}+1}$的圖象所圍成的封閉圖形的面積是$\frac{2π}{a}\sqrt{{a}^{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x.
(Ⅰ)求函數(shù)f(x)的對(duì)稱軸所在的直線方程;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=3,c=1,ab=2$\sqrt{3}$,且a<b,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在某次試驗(yàn)中,有兩個(gè)試驗(yàn)數(shù)據(jù)x,y,統(tǒng)計(jì)的結(jié)果如表格.
x12345
y23445
(1)在給出的坐標(biāo)系中畫出x,y的散點(diǎn)圖;

(2)求出y對(duì)x的回歸直線方程$\widehaty=\widehatbx+\widehata$,并估計(jì)當(dāng)x為10時(shí)y的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.D為△ABC的BC邊上一點(diǎn),$\overline{DC}=-2\overline{DB}$,過(guò)D點(diǎn)的直線分別交直線AB、AC于E、F,若$\overline{AE}=λ\overline{AB},\overline{AF}=μ\overline{AC}$,其中λ>0,μ>0,則$\frac{2}{λ}+\frac{1}{μ}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,$\overrightarrow{c}$=2$\overrightarrow{a}$+3$\overrightarrow$,$\overrightarrow6fctphj$=k$\overrightarrow{a}$-$\overrightarrow$ (k∈R),且$\overrightarrow{c}$$⊥\overrightarrow0sewna0$,那么k=( 。
A.$\frac{8}{7}$B.2C.$\frac{4}{7}$D.$\frac{\sqrt{57}}{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案