已知向量
a
=(cos36°,sin36°),
b
=(cos24°,sin(-24°)),則
a
b
=
1
2
1
2
分析:直接利用向量的數(shù)量積的坐標表示,然后結合兩角和的余弦公式進行化簡即可求解
解答:解:由題意可得,
a
b
=cos36°cos24°+sin36°sin(-24°)
=cos36°cos24°-sin36°sin24°
=cos(36°+24°)=cos60°=
1
2

故答案為:
1
2
點評:本題主要考查了向量 的數(shù)量積的坐標表示及兩角和的余弦公式的簡單應用,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosα,1),
b
=(-2,sinα),α∈(π,
2
)
,且
a
b

(1)求sinα的值;
(2)求tan(α+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cos(-θ),sin(-θ)),
b
=(cos(
π
2
-θ),sin(
π
2
-θ))

(1)求證:
a
b

(2)若存在不等于0的實數(shù)k和t,使
x
=
a
+(t2+3)
b
,
y
=(-k
a
+t
b
),滿足
x
y
,試求此時
k+t2
t
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosθ,sinθ),θ∈[0,π],向量
b
=(
3
,1),b=(
3
,1)
a
b
,則θ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosα,sinα),
b
=(sinβ,-cosβ),則|
a
+
b
|最大值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosθ,sinθ),向量
b
=(2
2
,-1),則|3
a
-
b
|的最大值是
 

查看答案和解析>>

同步練習冊答案