已知函數(shù)y=2sin(ωx+φ)滿足f(-x)=f(x),其圖象與直線y=2的某兩個交點橫坐標為x1,x2,|x1-x2|的最小值為π,則( 。
分析:由y=2sin(ωx+φ)是偶函數(shù),結(jié)合所給的選項可得 φ=
π
2
.再由函數(shù)的周期為π,即
ω
=π,求得ω=2,從而得出結(jié)論.
解答:解:∵函數(shù)y=2sin(ωx+φ)滿足f(-x)=f(x),∴函數(shù)y=2sin(ωx+φ)是偶函數(shù),結(jié)合所給的選項可得 φ=
π
2

再由其圖象與直線y=2的某兩個交點橫坐標為x1,x2,|x1-x2|的最小值為π,可得函數(shù)的周期為π,即
ω
=π,故ω=2,
故選D.
點評:本題主要考查利用y=Asin(ωx+φ)的圖象特征,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)y=2sin(ωx+φ)(ω>0))在區(qū)間[0,2π]的圖象如圖:那么ω=( 。
A、1
B、2
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=2sin(wx+θ)為偶函數(shù),其圖象與直線y=2某兩個交點的橫坐標分別為x1,x2,若|x2-x1|的最小值為π,則該函數(shù)在區(qū)間(  )上是增函數(shù).
A、(-
π
2
,-
π
4
)
B、(-
π
4
π
4
)
C、(0,
π
2
)
D、(
π
4
,
4
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=2sinωx(ω>0)在[-
π
3
π
4
]
上單調(diào)遞增,則實數(shù)ω的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
2
sin(2x+
π
4
)+2
,求
(1)函數(shù)的最小正周期是多少?
(2)函數(shù)的單調(diào)增區(qū)間是什么?
(3)函數(shù)的圖象可由函數(shù)y=
2
sin2x(x∈R)
的圖象如何變換而得到?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列4個命題:
①已知函數(shù)y=2sin(x+?)(0<?<π)的圖象如圖所示,則φ=
π
6
5
6
π;
②在△ABC中,∠A>∠B是sinA>sinB的充要條件;
③定義域為R的奇函數(shù)f(x)滿足f(1+x)=-f(x),則f(x)的圖象關(guān)于點(
1
2
,0)
對稱;
④對于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)至多有一個零點;其中正確命題序號

查看答案和解析>>

同步練習冊答案