已知點(diǎn)P(3,m)在直線x+y-1=0上,則m的值為( 。
A、5B、2C、-2D、-6
考點(diǎn):直線的一般式方程
專題:直線與圓
分析:由題意可得3+m-1=0,解方程可得.
解答: 解:∵點(diǎn)P(3,m)在直線x+y-1=0上,
∴3+m-1=0,解得m=-2
故選:C
點(diǎn)評(píng):本題考查直線的一般式方程,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖正方形BCDE的邊長(zhǎng)為a,已知AB=
3
BC,將△ABE沿BE邊折起,折起后A點(diǎn)在平面BCDE上的射影為D點(diǎn),則翻折后的幾何體中有如下描述:
①AB與DE所成角的正切值是
2
;
②AB∥CE;
③VB-ACE的體積是
1
6
a2;
④平面ABC⊥平面ADC;
⑤直線EA與平面ADB所成角為30°.
其中正確的有
 
.(填寫你認(rèn)為正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某專營(yíng)店經(jīng)銷某商品,當(dāng)售價(jià)不高于10元時(shí),每天能銷售100件,當(dāng)價(jià)格高于10元時(shí),每提高1元,銷量減少3件,若該專營(yíng)店每日費(fèi)用支出為500元,用x表示該商品定價(jià),y表示該專營(yíng)店一天的凈收入(除去每日的費(fèi)用支出后的收入).
(1)把y表示成x的函數(shù);
(2)試確定該商品定價(jià)為多少元時(shí),一天的凈收入最高?并求出凈收入的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC是等腰三角形,∠ABC=120°,以A,B為焦點(diǎn)的雙曲線過點(diǎn)C,則雙曲線的離心率為( 。
A、1+
2
B、1+
3
C、
1+
2
2
D、
1+
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在梯形ABCD中,
AB
=2
DC
.
BC
 
.
=6,P為梯形ABCD所在平面上一點(diǎn),且滿足
AP
+
BP
+4
DP
=
0
,
DA
CB
=
.
DA
 
.
.
DP
 
.
,Q為邊AD上的一個(gè)動(dòng)點(diǎn),則
.
PQ
 
.
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
kx+k(a-1),x≥0
1
3
x3-
1
2
ax2+(a-1)x-a2+2a-2,x<0
,其中a∈R,若對(duì)任意的非零的實(shí)數(shù)x1,存在唯一的非零的實(shí)數(shù)x2(x2≠x1),使得f(x2)=f(x1)成立,則k的最大值為(  )
A、-1B、-2C、-4D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)為偶函數(shù),x>0時(shí),f(x)單調(diào)遞增,P=f(-π),Q=f(e),R=f(
2
),則P,Q,R的大小為( 。
A、R>Q>P
B、Q>R>P
C、P>R>Q
D、P>Q>R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2+2x-3=0.
(1)求過點(diǎn)P(1,3)且與圓C相切的直線方程;
(2)問是否存在斜率為1的直線l,使以l被圓C截得的弦AB為直線的圓經(jīng)過原點(diǎn)?若存在,請(qǐng)求出的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在半徑為10
3
cm的半圓形(O為圓心)鐵皮上截取一塊矩形材料ABCD,其中點(diǎn)A、B在直徑上,點(diǎn)C、D在圓周上,將所截得的矩形鐵皮ABCD卷成一個(gè)以AD為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),記圓柱形罐子的體積為V(cm3).
(1)按下列要求建立函數(shù)關(guān)系式:
①設(shè)AD=xcm,將V表示為x的函數(shù);
②設(shè)∠AOD=θ(rad),將V表示為θ的函數(shù);
(2)請(qǐng)您選用(1)問中的一個(gè)函數(shù)關(guān)系,求圓柱形罐子的最大體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案