數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=
13
Sn
,n=1,2,3,…,求
(Ⅰ)a2,a3,a4的值及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)a2+a4+a6+…+a2n的值.
分析:(I)由題設(shè)條件得a2=
1
3
S1=
1
3
a1=
1
3
,a3=
1
3
S2=
1
3
(a1+a2)=
4
9
,a4=
1
3
S3=
1
3
(a1+a2+a3)=
16
27
,再由an+1-an=
1
3
(Sn-Sn-1)=
1
3
an
(n≥2),得an+1=
4
3
an
(n≥2),由此能夠求出數(shù)列{an}的通項(xiàng)公式.
( II)由( I)可知a2,a4,…,a2n是首項(xiàng)為
1
3
,公比為(
4
3
)2
項(xiàng)數(shù)為n的等比數(shù)列,由此能求出a2+a4+a6+…+a2n的值.
解答:解:(I)由a1=1,an+1=
1
3
Sn
,n=1,2,3,…,
a2=
1
3
S1=
1
3
a1=
1
3
a3=
1
3
S2=
1
3
(a1+a2)=
4
9
,a4=
1
3
S3=
1
3
(a1+a2+a3)=
16
27
,(3分)
an+1-an=
1
3
(Sn-Sn-1)=
1
3
an
(n≥2),得an+1=
4
3
an
(n≥2),(6分)
又a2=
1
3
,所以an=
1
3
(
4
3
)n-2
(n≥2),(8分)
∴數(shù)列{an}的通項(xiàng)公式為an=
1n=1
1
3
(
4
3
)
n-2
n≥2
;(9分)

( II)由( I)可知a2,a4,…,a2n是首項(xiàng)為
1
3
,公比為(
4
3
)2
項(xiàng)數(shù)為n的等比數(shù)列,(11分)
∴a2+a4+a6+…+a2n=
1
3
1-(
4
3
)
2n
1-(
4
3
)
2
=
3
7
[(
4
3
)2n-1]
(13分)
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項(xiàng)的和,Tn表示數(shù)列{an}的前n項(xiàng)的乘積,Tn(k)表示{an}的前n項(xiàng)中除去第k項(xiàng)后剩余的n-1項(xiàng)的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項(xiàng)的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的通項(xiàng)an=
1
pn-q
,實(shí)數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項(xiàng)和.
(1)求證:當(dāng)n≥2時(shí),pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
a
2
n
+an
2
,n∈N*,
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
1
2
,
1
3
,
2
3
,
1
4
2
4
,
3
4
1
5
,
2
5
3
5
,
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運(yùn)算和結(jié)論:
①a24=
3
8
;
②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為Tn=
n2+n
4
;
④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結(jié)論是
①③④
①③④
.(將你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項(xiàng)和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案